Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2574–2585 | Cite as

Effect of Zr Microalloying on Austenite Grain Size of Low-Carbon Steels

  • Minghao Shi
  • Rangasayee Kannan
  • Jian Zhang
  • Xiaoguang Yuan
  • Leijun LiEmail author


The effect of microalloying addition of Zr on the characteristics of inclusions and prior austenite grain sizes following a quench heat treatment has been investigated for two custom-made steels. The average size of particles in the Zr-containing steel is found to be the same as the Zr-free steel (0.49 μm). However, the number of smaller particles in the Zr-containing steel is much higher than the Zr-free steel. The inclusions in the Zr-containing steel are composed of ZrO2-TiN-MnS, and inclusions in the Zr-free steel are consisted of TiOx-Ti(C,N). The average prior austenite grain size of the Zr-containing steel is consistently smaller than that of the Zr-free steel, due to a large number of fine oxide inclusions and Ti(C,N) precipitates, working to pin the austenite grain boundaries at temperatures up to 1673 K (1400 °C). The grain refinement mechanisms by inclusions through the addition of Zr are discussed via thermodynamic and kinetic calculations.



Minghao Shi gratefully acknowledges the financial support from China Scholarship Council.


  1. 1.
    X. Zhang, L. Fan, Y. Xu, Mater. Design, 2015, 65, 682-689.CrossRefGoogle Scholar
  2. 2.
    W. Wu, P. Jönsson, K. Nakajima, High Temp Mater Proc, 2017, 36, 309-325.Google Scholar
  3. 3.
    J. Kobayashi, D. Ina, A. Futamura, ISIJ Int. 2014, 54, 955-962.CrossRefGoogle Scholar
  4. 4.
    C. J. Martis, S. K. Putatunda, J. Boileau, Mater. Design, 2013, 46, 168-174.CrossRefGoogle Scholar
  5. 5.
    M. H. Lee, R. Kim, J. H. Park, Scientific Reports. 2019, 9, 1-11.CrossRefGoogle Scholar
  6. 6.
    S. F. Medina, M. Chapa, P. Valles, A. Quispe, M. I. Vega, ISIJ Int, 1999, 39, 930-936.CrossRefGoogle Scholar
  7. 7.
    Q. Sha and Z. Sun, Mater. Sci. Eng A, 2009, 523, 77–84.CrossRefGoogle Scholar
  8. 8.
    K. He, T. N. Baker, Mater. Sci. Eng A, 1998, 256, 111-119.CrossRefGoogle Scholar
  9. 9.
    X. Li, T. Zhang, Y. Min, C. Liu, M. Jiang, Ironmaking & Steelmaking, 2019, 46, 292-300.CrossRefGoogle Scholar
  10. 10.
    M. Shi, P. Zhang, F. Zhu, ISIJ Int, 2014, 54, 188-192.CrossRefGoogle Scholar
  11. 11.
    L. Yu, G. Li, X. Wan, X. Zhang, Y. Shen, K. Wu, Ironmaking & Steelmaking, 2019, 46, 113-123.CrossRefGoogle Scholar
  12. 12.
    M. Shi, P. Zhang, C. Wang, ISIJ Int, 2014, 54, 932-937.CrossRefGoogle Scholar
  13. 13.
    F. Chai, C. F. Yang, H. Su, Y. Q. Zhang, Z. Xu, J. Iron. Steel. Res. Int. 2009, 16, 69–74.CrossRefGoogle Scholar
  14. 14.
    K. Sakata, H. Suito, Metallurgical & Materials Transactions B, 1999, 30(6), 1053-1063.CrossRefGoogle Scholar
  15. 15.
    P. A. Manohar, M. Ferry, T. Chandra, ISIJ Int, 1998, 38, 913-924.CrossRefGoogle Scholar
  16. 16.
    K. Nakajima, H. Hasegawa, S. Khumkoa, Metallurgical & Materials Transactions B, 2003, 34(5), 539-547.CrossRefGoogle Scholar
  17. 17.
    D.T. Livey, P. Murray, Journal of the American Ceramic Society, 1956, 39(11), 363-372.CrossRefGoogle Scholar
  18. 18.
    D.P. Song, M.J. Chen, Y.C. Liang, Modelling and Simulation in Materials Science and Engineering, 2010, 18, 1-12.Google Scholar
  19. 19.
    A.V. Karasev, H. Suito, ISIJ Int, 2008, 48, 1507-1516.CrossRefGoogle Scholar
  20. 20.
    J. X. Chen, Handbook of Charts and Data for Steelmaking, Beijing, Metallurgical Industry, 1984, 662.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Minghao Shi
    • 1
    • 2
  • Rangasayee Kannan
    • 2
  • Jian Zhang
    • 3
  • Xiaoguang Yuan
    • 1
  • Leijun Li
    • 2
    Email author
  1. 1.School of Material Science and EngineeringShenyang University of TechnologyShenyangP.R. China
  2. 2.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Ansteel Beijing Research InstituteBeijingP.R. China

Personalised recommendations