Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2747–2757 | Cite as

Highly Efficient Separation/Recycling Palladium(II) Ions from Aqueous Solutions by Silica Gel-Coated Graphene Oxide Modified with Mercapto Groups

  • Min LiEmail author
  • Si Tang
  • Jian Feng
  • Kun Huang
  • Xiaojing Meng
  • Feng Gao
  • Songshan JiangEmail author
Article
  • 21 Downloads

Abstract

The separation and recovery of precious metals from secondary resources is an extremely important and challenging task. Herein, a novel sorbent is successfully prepared by chemical grafting and utilized for the extraction and separation of Pd(II) ions from aqueous solutions. Various characterization techniques, including Fourier transform infrared spectroscopy, scanning electron microscopy, Brunauer–Emmett–Teller, X-ray photoelectron spectroscopy, and element analysis, are employed to study the structure, morphology, porous nature, and chemical composition of the as-prepared SiO2@GO-SH nanocomposites. The adsorption of Pd(II) ions on the SiO2@GO-SH can be described by the pseudo-second-order model and Langmuir isotherm model. The adsorption equilibrium has been attained within 90 min and the maximum adsorption capacity of 423.2 mg g−1 was attained at pH 3.5 and T = 308 K. The results reveal that SiO2@GO-SH exhibits an excellent adsorption performance towards Pd(II) ions. In addition, we have proposed the adsorption mechanism for Pd(II) ions on the SiO2@GO-SH surface. The adsorption of Pd(II) in SiO2@GO-SH is a chemisorption process, where partial adsorbed Pd(II) ions are reduced to Pd(0) by functional groups (-SH) in the SiO2@GO-SH. The results indicate that SiO2@GO-SH can serve as a promising sorbent for the efficient separation and recovery of palladium from the palladium-containing secondary resources.

Notes

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 51708075) and the Natural Science Foundation of Chongqing, China (No. cstc2019jcyj-msxmX0401). Also, the authors acknowledge the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant Nos. KJ1713335, KJQN201801527). This project is supported by open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University (Grant No. 2019GXYSOF14)

References

  1. 1.
    K. Yamamoto, J. Li, J.A.O. Garber, J.D. Rolfes, G.B. Boursalian, J.C. Borghs, C. Genicot, J. Jacq, M. van Gastel, F. Neese and T. Ritter, Nature., 2018, vol. 554, pp. 511.Google Scholar
  2. 2.
    D. Fujita, Y. Ueda, S. Sato, N. Mizuno, T. Kumasaka and M. Fujita, Nature., 2016, vol. 540, pp. 563.Google Scholar
  3. 3.
    Y. Taninouchi and T.H. Okabe, Metall. Mater. Trans. B., 2018, vol. 49, pp. 1781.Google Scholar
  4. 4.
    Report on Critical raw materials for the EU-European Commission, 2014.Google Scholar
  5. 5.
    S. Sharma, A.S. KrishnaKumar and N. Rajesh, Rsc Adv, 2017, vol. 7, pp. 52133-142.Google Scholar
  6. 6.
    D. Fontana, M. Pietrantonio, S. Pucciarmati, G.N. Torelli, C. Bonomi and F. Masi, J. Mater Cycles Waste, 2018, vol. 20, pp. 1199.Google Scholar
  7. 7.
    S. Lin, J.K. Bediako, C. Cho, M. Song, Y. Zhao, J. Kim, J. Choi and Y. Yun, Chem. Eng. J., 2018, vol. 345, pp. 337 .Google Scholar
  8. 8.
    S. Nagireddi, A.K. Golder and R. Uppaluri, J. Wat. Pro. Eng., 2017, vol. 19, pp. 8-17.Google Scholar
  9. 9.
    L. Zhong, J. Zhang, Q. Zhang, M. Chen and Z. Huang, Rsc Adv, 2017, vol. 7, pp. 39244 .Google Scholar
  10. 10.
    Y. Dai, Y. Liu and A. Zhang, J. Porous Mat., 2017, vol. 24, pp. 1037.Google Scholar
  11. 11.
    Z. Peng, Z. Li, X. Lin, H. Tang, L. Ye, Y. Ma, M. Rao, Y. Zhang, G. Li and T. Jiang, Jom-US, 2017, vol. 69, pp. 1553.Google Scholar
  12. 12.
    S. Sharma, C. Wu, R.T. Koodali and N. Rajesh, Rsc Adv, 2016, vol. 6, pp. 26668 .Google Scholar
  13. 13.
    B. Zhang, S. Wang, L. Fu and L. Zhang, Polymers-basel, 2018, vol. 10, pp. 437 .Google Scholar
  14. 14.
    İ. Duru, D. Ege and A.R. Kamali, J. Mater. Sci., 2016, vol. 51, pp. 6097 .Google Scholar
  15. 15.
    Q. Ricoux, J.P. Méricq, D. Bouyer, V. Bocokić, L.C. Hernandez-Juarez, S. van Zutphen and C. Faur, Sep. Purif. Technol., 2017, vol. 174, pp. 159-165.Google Scholar
  16. 16.
    B. Zhang, L. Fu, S. Wang and L. Zhang, Mater. Chem. Phys., 2018, vol. 214, pp. 533-539.Google Scholar
  17. 17.
    G. Ge, X. Yuanlai, Y. Xinxin, W. Fen, Z. Fang, Y. Junxia and C. Ruan, Sci. Rep., 2017, vol. 7, 11290.Google Scholar
  18. 18.
    M. Li, M. Li, C. Feng and Q. Zeng, Appl. Surf. Sci., 2014, vol. 314, pp. 1063-69.Google Scholar
  19. 19.
    M. Li, X. Meng, X. Liang, J. Yuan, X. Hu, Z. Wu and X. Yuan, Hydrometallurgy, 2018, vol. 176, pp. 243 .Google Scholar
  20. 20.
    S. Sivrikaya, H. Altundag, M. Zengin and M. Imamoglu, Sep. Sci. Technol., 2011, vol. 46, pp. 2032-2040.Google Scholar
  21. 21.
    A.I.A. Sherlala, A.A.A. Raman, M.M. Bello and A. Asghar, Chemosphere, 2018, vol. 193, pp. 1004 .Google Scholar
  22. 22.
    W. Peng, H. Li, Y. Liu and S. Song, J. Mol. Liq., 2017, vol. 230, pp. 496.Google Scholar
  23. 23.
    S. Dey, S. Podder, A. Roychowdhury, D. Das and C.K. Ghosh (2018) J. Environ. Manag. 211, pp. 356-66.Google Scholar
  24. 24.
    S. Koushkbaghi, A. Zakialamdari, M. Pishnamazi, H.F. Ramandi, M. Aliabadi and M. Irani, Chem. Eng. J., 2018, vol. 337, pp. 169.Google Scholar
  25. 25.
    L. Yu, Q. Zhang, B. Yang, Q. Xu, Q. Xu and X. Hu, Sensor Actuat B-Chem, 2018, vol. 259, pp. 540.Google Scholar
  26. 26.
    Q. Liu, J. Shi, J. Sun, T. Wang, L. Zeng and G. Jiang, Angew. Chem. Int. Edit, 2011, vol. 50, pp. 5913.Google Scholar
  27. 27.
    D. Zhao, X. Gao, C. Wu, R. Xie, S. Feng and C. Chen, Appl. Surf. Sci., 2016, vol. 384, pp. 1.Google Scholar
  28. 28.
    D. Zhao, Q. Zhang, H. Xuan, Y. Chen, K. Zhang, S. Feng, A. Alsaedi, T. Hayat and C. Chen, J. Colloid interf. Sci., 2017, vol. 506, pp. 300.Google Scholar
  29. 29.
    H. Hosseinzadeh, S. Ramin, Int. J. Biol. Macromol., 2018, vol. 113, pp. 859.Google Scholar
  30. 30.
    L. Cui, Y. Wang, L. Gao, L. Hu, L. Yan, Q. Wei and B. Du, Chem. Eng. J., 2015, vol. 281, pp. 1.Google Scholar
  31. 31.
    C. He, Z. Yang, J. Ding, Y. Chen, X. Tong and Y. Li, Colloid Surface A, 2017, vol. 520, pp. 448.Google Scholar
  32. 32.
    H.H. El-Maghrabi, S.M. Abdelmaged, A.A. Nada, F. Zahran, S.A. El-Wahab, D. Yahea, G.M. Hussein and M.S. Atrees, J. Hazard. Mater., 2017, vol. 322, pp. 370.Google Scholar
  33. 33.
    S. Motahari, B.S. Heidari and G.H. Motlagh, J. Appl. Polym. Sci., 2015, vol. 132, 1. https://doi.org/10.1002/app.42543.CrossRefGoogle Scholar
  34. 34.
    A.R. Keshtkar, M. Irani and M.A. Moosavian, J. Taiwan. Inst. Chem. E., 2013, vol. 44, pp. 279.Google Scholar
  35. 35.
    D. Perez-Quintanilla, I. Del Hierro, M. Fajardo and I. Sierra, Micropor. Mesopor. Mat., 2006, vol. 89, pp. 58.Google Scholar
  36. 36.
    M. Li, C. Feng, M. Li, Q. Zeng, Q. Gan and H. Yang, Appl. Surf. Sci., 2015, vol. 332, pp. 463.Google Scholar
  37. 37.
    T. Jiang, M. Dong, L. Yan, M. Fang and R. Liu, J. Nanosci. Nanotechno., 2018, vol. 18, pp. 4692.Google Scholar
  38. 38.
    Z. Wang, P. Yin, R. Qu, H. Chen, C. Wang and S. Ren, Food Chem., 2013, vol. 136, pp. 1508.Google Scholar
  39. 39.
    M. Li, C. Feng, M. Li, Q. Zeng and Q. Gan, Hydrometallurgy, 2015, vol. 154, pp. 63.Google Scholar
  40. 40.
    M.B. Luo, Y.Y. Xiong, H.Q. Wu, X.F. Feng, J.Q. Li and F. Luo, T, Angew. Chem. Int. Edit, 2017, vol. 129, pp. 16594.Google Scholar
  41. 41.
    J. Cao, G. Xu, Y. Xie, M. Tao and W. Zhang, Rsc Adv, 2016, vol. 6, pp. 58088.Google Scholar
  42. 42.
    X. Liang, J. Han, Y. Xu, L. Wang, Y. Sun and X. Tan, Appl. Surf. Sci., 2014, vol. 322, pp. 194.Google Scholar
  43. 43.
    N.H. Khdary, A.E.H. Gassim, A.G. Howard, T.S. Sakthivel and S. Seal, Anal Methods-UK, 2018, vol. 1, pp. 245.Google Scholar
  44. 44.
    F. Porcaro, L. Carlini, A. Ugolini, D. Visaggio, P. Visca, I. Fratoddi, I. Venditti, C. Meneghini, L. Simonelli, C. Marini, W. Olszewski, N. Ramanan, I. Luisetto and C. Battocchio, Materials, 2016, vol. 9, pp. 1028.Google Scholar
  45. 45.
    M. Wojnicki, R.P. Socha, Z. Pędzich, K. Mech, T. Tokarski and K. Fitzner, J. Chem. Eng. Data, 2018, vol. 63, pp. 702.Google Scholar
  46. 46.
    S. Lin, W. Wei, X. Wu, T. Zhou, J. Mao and Y. Yun, J. Hazard. Mater., 2015, vol. 299, pp. 10 .Google Scholar
  47. 47.
    S. Sharma and N. Rajesh, Chem. Eng. J., 2016, vol. 283, pp. 999 .Google Scholar
  48. 48.
    S.W. Won, J. Park, J. Mao and Y. Yun, Bioresource Technol., 2011, vol. 102, pp. 3888 .Google Scholar
  49. 49.
    T. Kimuro, M.R. Gandhi, U.M.R. Kunda, F. Hamada and M. Yamada, Hydrometallurgy, 2017, vol. 171, pp. 254 .Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.School of Resources, Environment and MaterialsGuangxi UniversityNaningChina

Personalised recommendations