Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 3103–3111 | Cite as

Study of Cu-Ni-Fe Alloys as Inert Anodes for Al Production in Low-Temperature KF-AlF3 Electrolyte

  • Sylvain Jucken
  • Bernard Tougas
  • Boyd Davis
  • Daniel Guay
  • Lionel RouéEmail author


Cu-Ni-Fe-based alloys are considered as promising O2-evolving anode materials for CO2-free Al production. In the present study, biphased (as-cast) and monophased (postcasting homogenized) Cu65Ni20Fe15, alloys, and monophased Ni65Fe25Cu10 alloy (in wt pct) are evaluated as O2-evolving anodes for Al production in potassium cryolite at 700 °C. The produced Al purity is 99.6 wt pct, and the erosion rate is estimated at 0.4 cm year−1 for both Cu65Ni20Fe15 anodes compared to 95.2 wt pct and 3.2 cm year−1 for the Ni65Fe25Cu10 anode. The compositions, and morphologies of the surface oxide layer and the metal fluoride layer present at the oxide/alloy interface are compared for the three anodes. The deleterious impact of electrolyte infiltration on the surface oxide building is highlighted.



The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant STPGP 494283-16), Prima Québec (Grant R13-13-001), Metal7, and Kingston Process Metallurgy for supporting this work.


  1. 1.
    International Aluminium Institute (IAI): Statistics on primary aluminium production. Accessed 19 Feb 2019.
  2. 2.
    International Energy Agency (IEA): Energy technology transitions for industry: strategies for the next industrial revolution. Accessed 19 Feb 2019.
  3. 3.
    D. Paraskevas, K. Kellens, A. Van de Voorde, W. Dewulf and J.R. Duflou: Procedia CIRP, 2016, vol. 40, pp. 209–13.CrossRefGoogle Scholar
  4. 4.
    J. Keniry: JOM, 2001, vol. 53, pp. 43–47.CrossRefGoogle Scholar
  5. 5.
    I. Galasiu, R. Galasiu and J. Thonstad, Inert Anodes for Aluminium Electrolysis, 1st ed., Aluminium-Verlag, Düsseldorf, 2007, pp. 10-11.Google Scholar
  6. 6.
    R.P. Pawlek: Light Met., 2014, pp. 1309–13.Google Scholar
  7. 7.
    V.A. Kovrov, A.P. Khramov, A.A. Redkin and Y.P. Zaikoz: ECS Trans., 2009, vol. 16 (39), pp. 7–17.CrossRefGoogle Scholar
  8. 8.
    J. Yang, D.G. Graczyk, C. Wunsch and J.N. Hryn: Light Met., 2007, pp. 537–41.Google Scholar
  9. 9.
    L. Cassayre, P. Palau, P. Chamelot and L. Massot: J. Chem. Eng. Data, 2010, vol. 55, pp. 4549–60.CrossRefGoogle Scholar
  10. 10.
    S.K. Padamata, A. S. Yasinskiy and P. V. Polyakov: J. Sib. Fed. Univ. Chem., 2018, vol. 1, pp. 18-30.Google Scholar
  11. 11.
    P. Meyer, M. Gibilaro, L. Massot, I. Pasquet, P. Tailhades, S. Bouvet, and P. Chamelot: Mat. Sci. Eng. B, 2018, vol. 228, pp. 117–22.CrossRefGoogle Scholar
  12. 12.
    T.R. Beck: Light Met.. 1995, pp 355–60.Google Scholar
  13. 13.
    V. De Nora and T. Nguyen: CA patent 2 567 127, 2012.Google Scholar
  14. 14.
    C. Barthelemy, S. Bouvet, A. Gabriel, V. Laurent, and A. Marmottant: CA patent application 2 952 263.Google Scholar
  15. 15.
    C. Barthelemy, A. Marmottant, V. Laurent S. Bouvet, and V. Stabrowski: CA patent application 2 980 248.Google Scholar
  16. 16.
    X. Cheng, L. Fan, H. Yin, L. Liu, K. Du and D. Wang: Corr. Sci., 2016, vol. 112, pp. 54-62.CrossRefGoogle Scholar
  17. 17.
    X. Cheng, H. Yin and D. Wang: Corr. Sci., 2018, vol. 141, pp. 168-174.CrossRefGoogle Scholar
  18. 18.
    D. Tang, K. Zheng, H. Yin, X. Mao, D.R. Sadoway and D. Wang: Electrochim. Acta, 2018, vol. 279, pp. 250-257.CrossRefGoogle Scholar
  19. 19.
    S. Helle, M. Pedron, B. Assouli, B. Davis, D. Guay, and L. Roué: Corr. Sci., 2010, vol. 52, pp. 3348–55.CrossRefGoogle Scholar
  20. 20.
    S. Helle, B. Brodu, B. Davis, D. Guay and L. Roué: Corr. Sci., 2011, vol. 53, pp. 3248–53.CrossRefGoogle Scholar
  21. 21.
    E. Gavrilova, G. Goupil, B. Davis, D. Guay and L. Roué: Corr. Sci., 2015, vol. 101, pp. 105–13.CrossRefGoogle Scholar
  22. 22.
    K.P. Gupta, S.B. Rajendraprasad and A.K. Jena: J. Alloy Phase Diagrams, 1987, vol. 3, pp. 116–27.Google Scholar
  23. 23.
    C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma and K. Ishida: J. Phase Equilib. Diffus., 2004, vol. 25, pp. 320–28.CrossRefGoogle Scholar
  24. 24.
    T.R. Beck, C.M. MacRae and N.C. Wilson: Metall. Mat. Trans. B, 2011, vol. 42, pp. 807–13.CrossRefGoogle Scholar
  25. 25.
    I. Gallino, M.E. Kassner and R.Busch: Corr. Sci., 2012, vol. 63, pp. 293–03.CrossRefGoogle Scholar
  26. 26.
    I. Gallino, S. Curiotto, M. Baricco, M.E. Kassner and R. Busch: J. Phase Equilib. Diffus., 2008, vol. 29, pp. 131–35.CrossRefGoogle Scholar
  27. 27.
    S. Jucken, E. Schaal, B. Tougas, B. Davis, D. Guay and L. Roué: Corr. Sci., 2019, vol. 147, pp. 321–29.CrossRefGoogle Scholar
  28. 28.
    I. Gallino: PhD thesis, Oregon State University, USA, 2003.Google Scholar
  29. 29.
    A.D. LeClaire: Diffusion in Solid Metals and Alloys, vol. 26, H. Mehrer, Landolt-Börnstein, eds., Springer, Berlin, 1990, pp. 473–85.Google Scholar
  30. 30.
    T. Jentoftsen, O.-A. Lorentsen, E. Dewing, G. Haarberg, and J. Thonstad: Metall. Mater. Trans. B, 2002, vol. 33, pp. 901–08.CrossRefGoogle Scholar
  31. 31.
    O.-A. Lorentsen: PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2000.Google Scholar
  32. 32.
    T.T. Nguyen: US patent 8 366 891, 2013.Google Scholar
  33. 33.
    A.P. Khramov, V.A. Kovrov, Y.P. Zaikov and V.M. Chumarev: Cor. Sci., 2013, vol. 70, pp. 194–202.CrossRefGoogle Scholar
  34. 34.
    G. Goupil, E. Gavrilova, B. Davis, D. Guay, and L. Roué: Light Met., 2014, pp. 1305–07.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Sylvain Jucken
    • 1
  • Bernard Tougas
    • 2
  • Boyd Davis
    • 3
  • Daniel Guay
    • 1
  • Lionel Roué
    • 1
    Email author
  1. 1.INRS-Énergie Matériaux TélécommunicationsVarennesCanada
  2. 2.Centre de Métallurgie du Québec (CMQ)Trois-RivièresCanada
  3. 3.Kingston Process Metallurgy IncKingstonCanada

Personalised recommendations