Advertisement

Microstructure Evolution During Controlled Solidification of “Fe2O3”-CaO-SiO2 Liquids in Air

  • S. NicolEmail author
  • E. Jak
  • P. C. Hayes
Article
  • 4 Downloads

Abstract

The principal chemical components in iron ore sintering are Fe2O3, CaO, and SiO2. This sintering process consists of three key steps: heating, holding at peak temperature, and cooling. During the cooling stage, a liquid oxide solidifies to form the final sinter microstructures. To investigate the fundamental processes taking place during the cooling of sinters, a new experimental technique has been developed that allows the stages of solidification to be determined in isolation, rather than inferred from the final microstructures. Fe2O3-CaO-SiO2 oxide samples of a bulk composition having a CaO/SiO2 mass ratio of 3.46 and 73.2 wt pct Fe2O3 were cooled in air from 1623 K (1350 °C) at 2 K/s, quenched at 5 K temperature intervals from 1533 K to 1453 K (1260 °C to 1180 °C), and analyzed using Electron Probe Micro X-Ray Analysis (EPMA). During cooling, four distinct stages were observed, consisting of the phase assemblages Liquid + Hematite (I), Liquid + Hematite + C2S(II), Liquid + C2S + CF2(III), and C2S + CF2 + CF (IV). This solidification sequence differs from that predicted under equilibrium and Scheil–Gulliver Cooling. Importantly, no Silico-Ferrite of Calcium (SFC) phase was observed to form on solidification of the liquid. Based on the microstructures formed and liquid compositions, measured by EPMA, it was demonstrated that kinetic factors play a major role in determining the phases and microstructures formed under the conditions investigated.

Notes

Acknowledgments

The authors would like to thank BHP Billiton for financial support to enable this research to be carried out, and the Centre of Microstructure and Microanalysis (CMM), the University of Queensland for providing electron microscope facilities that enabled the microanalytical measurements to be undertaken. This research was supported by an Education Endowment Fund (EEF) scholarship from the Australasian Institute of Mining and Metallurgy (AusIMM) and an Australian Government Research Training Program (RTP) Scholarship.

References

  1. 1.
    L. Lu and O. Ishiyama: in Iron Ore, Elsevier Ltd, 2015, pp. 395–433.Google Scholar
  2. 2.
    R. Lloyd, Min. Metall. 1922, vol. 3 (190), pp. 17–19.Google Scholar
  3. 3.
    J. Ostwald, BHP Tech. Bull. 1981, vol. 25, pp. 13-20.Google Scholar
  4. 4.
    C. Loo, K. Wan and V. Howes, Ironmaking Steelmaking 1988, vol. 15, pp. 279-285.Google Scholar
  5. 5.
    D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca and L. Verdeja, Miner. Process. Extr. Metall. Rev. 2017, vol. 38, pp. 254-264.CrossRefGoogle Scholar
  6. 6.
    C. Loo and W. Leung, ISIJ Int. 2003, vol. 43, pp. 1393-1402.CrossRefGoogle Scholar
  7. 7.
    L. Yang and L. Davis, ISIJ Int. 1999, vol. 39, pp. 239-245.CrossRefGoogle Scholar
  8. 8.
    P Dawson, J Ostwald and K Hayes, Trans. Inst. Min. Metall., Sect. C 1985, vol. 94, pp. C71-C78.Google Scholar
  9. 9.
    R. Burlingame, G. Bitsianes and T. Joseph, J. Met. 1956, vol. 8 (7), pp. 853-861.Google Scholar
  10. 10.
    I. Shigaki, M. Sawada, O. Tsuchiya, K. Yoshioka and T. Takahashi, Tetsu to Hagane 1984, vol. 70, pp. 2208-2215.CrossRefGoogle Scholar
  11. 11.
    Y. Hida, J. Okazaki, K. Otoh and M. Sasaki, Tetsu to Hagane 1987, vol. 73, pp. 1893-1900.CrossRefGoogle Scholar
  12. 12.
    E. Marliere, J. Steiler and D. Jeulin, in Proceedings of the Process Technology Conference, 1986, pp 523–35.Google Scholar
  13. 13.
    N. Scarlett, I. Madsen, M. Pownceby and A. Christensen, J. Appl. Crystallogr. 2004, vol. 37, pp. 362-368.CrossRefGoogle Scholar
  14. 14.
    N. Scarlett, M. Pownceby, I. Madsen and A. N. Christensen, Metall. Mater. Trans. B 2004, vol. 35B, pp. 929–936.CrossRefGoogle Scholar
  15. 15.
    N. Webster, M. Pownceby, I. Madsen and J. Kimpton, Metall. Mat. Trans. B 2012, vol. 43, pp. 1344-1357.CrossRefGoogle Scholar
  16. 16.
    N. Webster, M. Pownceby and I. Madsen, ISIJ Int. 2013, vol. 53, pp. 1334-1340.CrossRefGoogle Scholar
  17. 17.
    N. Webster, M. Pownceby, I. Madsen and J. Kimpton, ISIJ Int. 2013, vol. 53, pp. 774-781.CrossRefGoogle Scholar
  18. 18.
    M. Pownceby, N. Webster, J. Manuel and N. Ware, Trans. Inst. Min. Metall. Sect. C 2016, vol. 125, pp. 140–148.Google Scholar
  19. 19.
    J. Chen, M. Schevchenko, P. Hayes and E. Jak, ISIJ Int. 2019, vol. 59, pp. 795-804.CrossRefGoogle Scholar
  20. 20.
    B. Phillips and A. Muan, J. Am. Ceram. Soc. 1959, vol. 42, pp. 413-23.CrossRefGoogle Scholar
  21. 21.
    M. Pownceby, J. Clout and M. Fisher-White, Trans. Inst. Min. Metall. Sect. C 1998, vol. 107, pp. C1-C10.Google Scholar
  22. 22.
    S. Nicol, E. Jak, J. Chen, W. Qi, X. Mao and P. Hayes, in 6th Baosteel Australian Joint Centre Conf., Wollongong, 2018.Google Scholar
  23. 23.
    D. Ball: Agglomeration of iron ores. London : Heinemann Educational, London, 1973.Google Scholar
  24. 24.
    F. Incropera: Fundamentals of heat and mass transfer. 6th ed.. ed. Hoboken, NJ : John Wiley, Hoboken, NJ, 2007.Google Scholar
  25. 25.
    R. Blake, R. Hessevick, T. Zoltai and L. Finger, Am. Mineral. 1966, vol. 51, pp. 123-129.Google Scholar
  26. 26.
    J. Hamilton, B. Hoskins, W. Mumme, W. Borbidge and M. Montague, Neues Jahrb. Mineral. Abh. 1989, vol. 161, pp. 1-26.Google Scholar
  27. 27.
    H. Fredriksson and U. Åkerlind: Solidification and Crystallization Processing in Metals and Alloys. Chichester, UK: John Wiley & Sons, Ltd, Chichester, UK, 2012.CrossRefGoogle Scholar
  28. 28.
    Y. Waseda and J. Toguri: The Structure and Properties of Oxide Melts : Application of Basic Science to Metallurgical Processing. Singapore River Edge, NJ : World Scientific, 1998.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations