Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2694–2705 | Cite as

Agglomeration Mechanism of Complex Ti-Al Oxides in Liquid Ferrous Alloys Considering High-Temperature Interfacial Phenomenon

  • Wangzhong Mu
  • Changji XuanEmail author
Article
  • 116 Downloads

Abstract

This work presents the agglomeration mechanism of complex Ti-Al oxides in the liquid ferrous alloy. Cluster characteristics were investigated using Al and Ti/Al-complex deoxidation method in lab scale. The time-dependent size distribution, total number per volume, average size, and circularity of the clusters were quantitatively analyzed. Furthermore, high-temperature confocal laser scanning microscopy was utilized to directly observe the cluster formation of Ti-Al oxides. A capillary force model including wettability parameters was applied to compare the agglomeration capabilities of different types of non-metallic inclusions. When a low Ti is added into melt, the agglomeration of TiOx·FeO liquid inclusions is one of the key factors to decrease the frequency of cluster formation. When the Al is added into melt, the heterogeneous precipitation on TiOx·FeO surfaces is the main reaction process. Ti-Al oxides have lower agglomeration ability than that of Al2O3, which in turn, contribute to a low agglomeration frequency as well.

Notes

Acknowledgment

CX would like to acknowledge Docent Andrey Karasev and Professor Pär Jönsson at KTH Royal Institute of Technology for the assistance of sample preparation. WM would like to acknowledge the financial support from The Swedish Foundation for International Cooperation in Research and Higher Education (STINT).

References

  1. 1.
    A. Rahmel and P. J. Spencer: Oxid. Metals, 1991, vol. 35, pp. 53-68.Google Scholar
  2. 2.
    K. L. Luthra: Oxid. Metals, 1991, vol. 36, pp. 475-490.Google Scholar
  3. 3.
    B. J. Lee and N. Saunders: Zeitschrift für Metallkunde, 1997, vol. 88, pp. 152-161.Google Scholar
  4. 4.
    S. Das: J. Ph. Eq., 2002, vol. 23, pp. 525-536.Google Scholar
  5. 5.
    H. J. Seifert, A. Kussmaul and F. Aldinger: J. Alloy Compounds, 2001, vol. 317, pp. 19-25.Google Scholar
  6. 6.
    M. J. Mas-Guindal, E. Benko and M. A. Rodriguez: J. Alloy Compounds, 2008, vol. 454, pp. 352-358.Google Scholar
  7. 7.
    I. Bellemans, E. D. Wilde, N Moelans and K. Verbeken: Ad. Colloid Interface Sci., 2018, vol. 255, pp. 47-63.Google Scholar
  8. 8.
    A. P. Weber and S. K. Friedlander: J. Aerosol Sc., 1997, vol. 28, pp. 179-192.Google Scholar
  9. 9.
    T. G. Anjali and M. G. Basavaraj: J. Colloid Interface Sci., 2016, vol. 478, pp. 63-71.Google Scholar
  10. 10.
    N. Sinn, M. Alishahi and S. Hardt: J. Colloid Interface Sci., 2015, vol. 458, pp. 62-68.Google Scholar
  11. 11.
    C. J. Xuan, A. V. Karasev, P. G. Jönsson and K. Nakajima: Steel Res. Int., 2017, vol. 88, 1600090.Google Scholar
  12. 12.
    W. Mu, N. Dogan and K. S. Coley: J. Mater Sci., 2018, vol. 53, pp. 13203-13215.Google Scholar
  13. 13.
    W. Mu, P. G. Jönsson, and K. Nakajima: High Temp. Mater. Processes, 2017, vol. 36, pp. 309-325.Google Scholar
  14. 14.
    W. Mu, P. G. Jönsson, and K. Nakajima: ISIJ Int., 2014, 54, pp. 2907-2916.Google Scholar
  15. 15.
    E. Dickinson and L. Eriksson: Adv. Coll. Interface Sci., 1991, vol. 34, pp. 1-29.Google Scholar
  16. 16.
    W. Mu, N. Dogan and K. S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2379-2388.Google Scholar
  17. 17.
    W. Mu, N. Dogan and K. S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2092-2103.Google Scholar
  18. 18.
    W. Mu, N. Dogan and K. S. Coley: JOM, 2018, vol. 70, pp. 1199-1209.Google Scholar
  19. 19.
    C. Xuan, A. V. Karasev and P. G. Jönsson: ISIJ Int., 2016, vol. 56, pp. 1204-1209.Google Scholar
  20. 20.
    G. Kaptay: Ad. Colloid Interface Sci., 2018, vol. 256, pp. 163-192.Google Scholar
  21. 21.
    G. Kaptay: J. Mater. Sci., 2005, vol. 40, pp. 2125-2131.Google Scholar
  22. 22.
    O. Wijk: Inclusion Engineering. Proc. 7th Int. Conf. Refining Process (SCANINJECT VII), Luleå, Sweden, 1995, pp. 35–67.Google Scholar
  23. 23.
    L. Holappa and O. Wijk: Inclusion Engineering. Treatise on Process Metallurgy: Industrial Processes, 2014, pp. 347-372.Google Scholar
  24. 24.
    W. Mu, P. G. Jönsson and K. Nakajima: J. Mater. Sci., 2016, vol. 51, pp. 2168-2180.Google Scholar
  25. 25.
    K. J. Malmberg, H. Shibata, S. Y. Kitamura, P. G. Jönsson, S. Nabeshima and Y. Kishimoto: J. Mater. Sci., 2010, vol. 45, pp. 2157-2164.Google Scholar
  26. 26.
    J. Janis, K. Nakajima, A. Karasev, H. Shibata and P. G. Jönsson: J. Mater. Sci., 2010, vol. 45, pp. 2233-2238.Google Scholar
  27. 27.
    D. Zhang, Y. Shintaku, S. Suzuki and Y. I. Komizo: J. Mater. Sci., 2012, vol. 47, pp. 5524-5528.Google Scholar
  28. 28.
    X. L. Wan, R. Wei, L. Cheng, M. Enomoto and Y. Adachi: J. Mater. Sci., 2013, vol. 48, pp. 4345-4355.Google Scholar
  29. 29.
    W. Mu, H. Shibata, P. Hedström, P. G. Jönsson and K. Nakajima: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2133-2147.Google Scholar
  30. 30.
    C. Xuan, M. Mu, Z. I. Olano, P. G. Jönsson and K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 911-920.Google Scholar
  31. 31.
    W. Mu, H. Shibata, P. Hedström, P. G. Jönsson and K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 10-14.Google Scholar
  32. 32.
    H. Matsuura, C. Wang, G. Wen and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1265-1274.Google Scholar
  33. 33.
    C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40, pp. 1005-1021.Google Scholar
  34. 34.
    C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40, pp. 1022-1034.Google Scholar
  35. 35.
    C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2010, vol. 41, pp. 1084-1094.Google Scholar
  36. 36.
    M. Li, H. Matsuura and F. Tsukihashi: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1915-1923.Google Scholar
  37. 37.
    M. Li, H. Matsuura and F. Tsukihashi: Metall. Mater. Trans. A, 2018.  https://doi.org/10.1007/s11661-018-5015-3.Google Scholar
  38. 38.
    M. Li, H. Matsuura and F. Tsukihashi: Mater. Characterization, 2018, vol. 136, pp. 358-366.Google Scholar
  39. 39.
    M. K. Sun, I. H. Jung and H. G. Lee: Met. Mater. Int., 2008, vol. 14, pp. 791-798.Google Scholar
  40. 40.
    I. H. Jung, S. A. Decterov and A. D. Pelton: ISIJ Int., 2004, vol. 44, pp. 527-536.Google Scholar
  41. 41.
    S. A. Decterov, I. -H. Jung, E. Jak. Y.-B. Kang, P. Hayes and A. D. Pelton: Proc. 7th Int. Conf. Molten Slags, Fluxes and Salts, Café Town, South Africa, 2004, pp. 839-850.Google Scholar
  42. 42.
    F. Ruby-Meyer, J. Lehmann and H. Gaye: Scand. J. Metall., 2000, vol. 29, pp. 206-212.Google Scholar
  43. 43.
    W. Choi, H. Matsuura and F. Tsukihashi: ISIJ Int., 2011, vol. 51, pp. 1951-1956.Google Scholar
  44. 44.
    T. Nakaoka, S. Taniguchi, K. Matsumoto and S. T. Johansen: ISIJ Int., 2001, vol. 41, pp. 1103-1111.Google Scholar
  45. 45.
    H. Lei, L. Wang, Z. Wu and J. Fan: ISIJ Int., 2002, vol. 42, pp. 717-725.Google Scholar
  46. 46.
    H. Lei, K. Nakajima and J.-C. He: ISIJ Int., 2010, vol. 50, pp. 1735-1745.Google Scholar
  47. 47.
    H. Arai, K. Matsumoto, S. Shimasaki and S. Taniguchi: ISIJ Int., 2009, vol. 49, pp. 965-974.Google Scholar
  48. 48.
    R. Hamzaoui, O. Elkedim, N. Fenineche, E. Gaffet and J. Craven: Mater. Sci. Eng. A, 2003, vol. 360, pp. 299-305.Google Scholar
  49. 49.
    R. Hamzaoui, O. Elkedim and E. Gaffet: Mater Sci Eng A, 2004, vol. 381, pp. 363-371.Google Scholar
  50. 50.
    R. Hamzaoui and O. Elkedim: J. Alloys Comp., 2013, vol. 573, pp. 157-162.Google Scholar
  51. 51.
    J. F. Li, W. Q. Jie, G. C. Yang and Y. H. Zhou: Acta Mater., 2002, vol. 50, pp. 1797-1807.Google Scholar
  52. 52.
    T. Zeng: J. Alloys Compd. 2019.  https://doi.org/10.1016/j.jallcom.2017.08.285.
  53. 53.
    N. Nakada: Mater. Let., 2017, vol. 187, pp. 166-169.Google Scholar
  54. 54.
    L. Zhao, N. Park, Y. Tian, A. Shibata, and N. Tsuji: Adv. Eng. Mater., vol. 19, 2017.  https://doi.org/10.1002/adem.201600778 Google Scholar
  55. 55.
    A. V. Karasev and H. Suito: ISIJ Int., 2008, vol. 48, pp. 1507-1516.Google Scholar
  56. 56.
    J.-O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273-312.Google Scholar
  57. 57.
    TCFE9: TCS Steels/Fe-Alloys Database Version 9.0, Thermo-Calc Software AB, Sweden, 2017.Google Scholar
  58. 58.
    A. V. Karasev and H. Suito: ISIJ Int., 2009, vol. 49, pp. 229-238.Google Scholar
  59. 59.
    H. Suito, A. V. Karasev, M. Hamada, R. Inoue and K. Nakajima: ISIJ Int., 2011, vol. 51, pp. 1151-1162.Google Scholar
  60. 60.
    C. Xuan, H. Shibata, S. Sukenaga, P. G. Jönsson and K. Nakajima: ISIJ Int., 2015, vol. 55, pp. 1882-1890.Google Scholar
  61. 61.
    K. Ogino, K. Nogi and Y. Koshida: Tetsu-to-Hagané, 1973, vol. 59, pp. 1380-1387.Google Scholar
  62. 62.
    J. M. Humenik and W. D. Kingery: J. Am. Cera. Soc., 1954, vol. 37, pp. 18-23.Google Scholar
  63. 63.
    P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov and K. Nagayama: J. Colloid Interface Sci., 1993, vol. 155, pp. 420-437.Google Scholar
  64. 64.
    V. N. Paunov, P. A. Kralchevsky, N. D. Denkov and K. Nagayama: J. Colloid Interface Sci., 1993, vol. 157, pp. 100-112.Google Scholar
  65. 65.
    C. J. Xuan and W. Mu: J. Mater. Sci. 2019.  https://doi.org/10.1007/s10853-019-03458-z.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden
  2. 2.Uddeholms AB (a voestalpine company)HagforsSweden

Personalised recommendations