Advertisement

Effects of Remelting Current on Structure, Composition, Microsegregation, and Inclusions in Inconel 718 Electroslag Remelting Ingots

  • Xiao Shi
  • Sheng-Chao Duan
  • Wen-Sheng Yang
  • Ming-Tao Mao
  • Han-Jie GuoEmail author
  • Jing Guo
Article
  • 5 Downloads

Abstract

The macro- and microstructures, chemical compositions, microsegregations, and nonmetallic inclusion characteristics at different positions of the as-cast IN718 ingots produced by a laboratory-scale electroslag remelting (ESR) furnace under four remelting currents (150, 200, 250, and 300 A) were compared and investigated comprehensively. The results indicate that the average melting rate increases with the increasing remelting current, and the molten pool tends to be deeper. Thus, at the same position of the ESR ingots, the volume fraction of the segregated phase, the degree of elemental segregation, and the secondary dendrite arm spacing have the same tendency to increase with the increasing remelting current and show an increasing trend from the bottom to the top along the height of each ingot. If the current is set relatively low, the oxygen and nitrogen levels in the ingots increase, the conditions that make the contents and distributions of Al and Ti become unstable. In addition, the major nonmetallic inclusions in the IN718 ESR ingots are MgO·Al2O3 complex oxide inclusions with a three-layer structure and (Nb,Ti)N nitrides. The volume fractions and mean equivalent diameters display a downward trend with the increasing remelting current. The size and quantity of these inclusions are always larger in the upper portions of the ingots than those in the lower portions.

Notes

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (NSFC) Grant No. U1560203, the National Science Foundation for Young Scientists of China No. 51704021, and the Fundamental Research Fund for the Central Universities of China No. FRF-TP-16-079A1.

References

  1. 1.
    A. Choudhury: ISIJ Int., 1992, vol. 32, pp. 563–74.CrossRefGoogle Scholar
  2. 2.
    J.M. Moyer, L.A. Jackman, C.B. Adasczik, R.M. Davis, and R. Forbes-Jones: Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, PA, 1994.Google Scholar
  3. 3.
    Z.Z. Wang, D.H. Hua, X. Jin, and G.S. Chen: J. Iron Steel Res., 2003, vol. 15, pp. 338–43.Google Scholar
  4. 4.
    K.O. Yu and J. Domingue: Superalloy 718: Metallurgy and Applications, TMS, Pittsburgh, PA, 1989.Google Scholar
  5. 5.
    J.G. Yang and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1–10.Google Scholar
  6. 6.
    D.K. Melgaard, R.L. Williamson, and J.J. Beaman: JOM, 1998, vol. 50, pp. 13–17.CrossRefGoogle Scholar
  7. 7.
    X. Wang, R.M. Ward, M.H. Jacobs, and M.D. Barratt: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2981–89.CrossRefGoogle Scholar
  8. 8.
    S.M. Jung: ISIJ Int., 2001, vol. 41, pp. 1447–53.CrossRefGoogle Scholar
  9. 9.
    Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1465–74.CrossRefGoogle Scholar
  10. 10.
    J.G. Yang, and J.H. Park: Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts, TMS, Nashville, TN, 2016.Google Scholar
  11. 11.
    G. Pateisky, H. Biele, and H.J. Fleischer: J. Vac. Sci. Tech., 1972, vol. 9, pp. 1318–21.CrossRefGoogle Scholar
  12. 12.
    Q. Wang, H. Cai, L.P. Pan, Z. He, S. Liu, and B.K. Li: JOM, 2016, vol. 68, pp. 3143–49.CrossRefGoogle Scholar
  13. 13.
    V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271–80.CrossRefGoogle Scholar
  14. 14.
    B. Hernandezmorales and A. Mitchell: Ironmak. Steelmak., 1999, vol. 26, pp. 423–38.CrossRefGoogle Scholar
  15. 15.
    Q. Liang, X.C. Chen, H. Ren, F. Wang, and H.J. Guo, J. Aeronaut Mater., 2012, vol. 32, pp. 29–34.Google Scholar
  16. 16.
    X.C. Chen, H. Ren, R. Fu, D. Feng: Spec. Steel Tech., 2011, vol. 17, pp. 1–4.Google Scholar
  17. 17.
    T. Antonsson and H. Fredriksson: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 85–96.CrossRefGoogle Scholar
  18. 18.
    M. Wang, X.D. Zha, M. Gao, Y.C. Ma, K. Liu, and Y.Y. Li: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5217–31.CrossRefGoogle Scholar
  19. 19.
    Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2011.Google Scholar
  20. 20.
    A. Kharicha, A. Ludwig, and M. Wu: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 129–34.CrossRefGoogle Scholar
  21. 21.
    J.G Yang, J.H Park (2017) Metall. Mater. Trans. B, 48B:2147–56.CrossRefGoogle Scholar
  22. 22.
    C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472–86.CrossRefGoogle Scholar
  23. 23.
    F. R. Carmona and A. Mitchell: ISIJ Int., 1992, vol. 32, pp. 529–37.CrossRefGoogle Scholar
  24. 24.
    J.N. DuPont, C.V. Robino, J.R. Michael, M.R. Notis, and A.R. Marder: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2785–96.CrossRefGoogle Scholar
  25. 25.
    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, Jr., and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.CrossRefGoogle Scholar
  26. 26.
    N.B. Dahotre, M.H. McCay, T.D. McCay, C.R. Hubbard, W.D. Porter, and O.B. Cavin: Scripta Metall. Mater., 1993, vol. 28, pp. 1359–64.CrossRefGoogle Scholar
  27. 27.
    D.H. Li, X.Q. Chen, P.X. Fu, X.P. Ma, H.W. Liu, Y. Chen, Y.F. Cao, Y.K. Luan, and Y.Y. Li: Nat. Commun., 2014, vol. 5, pp. 6291–98.Google Scholar
  28. 28.
    S. Radwitz, J. Morscheiser, and B. Friedrich: European Metallurgical Conference, Weimar, Germany, 2013.Google Scholar
  29. 29.
    X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1596–1607.CrossRefGoogle Scholar
  30. 30.
    J. Fu: Acta. Metall. Sin., 1979, vol. 15, pp. 526–39.Google Scholar
  31. 31.
    J. Fu and J. Zhu: Acta. Metall. Sin., 1964, vol. 7, pp. 250–62.Google Scholar
  32. 32.
    S.W. Cho and H. Suito: ISIJ Int., 1994, vol. 34, pp. 746–54.CrossRefGoogle Scholar
  33. 33.
    K. Fujii, T. Nagasaka and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059–66.CrossRefGoogle Scholar
  34. 34.
    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, W.E Hammetter (1989) Metall. Trans. A 20A: 2149–58.CrossRefGoogle Scholar
  35. 35.
    M.E. Fraser and A. Mitchell: Ironmak. Steelmak., 1976, vol. 3, pp. 279–87.Google Scholar
  36. 36.
    . Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Gong, and F.B. Liu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1885–97.CrossRefGoogle Scholar
  37. 37.
    A. Karasev and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 249–57.CrossRefGoogle Scholar
  38. 38.
    H. Ohta and H. Suito: ISIJ Int., 2003, vol. 43, pp. 1293–1300.CrossRefGoogle Scholar
  39. 39.
    W.L. Jerzak and Z. Kalicka: Arch. Metall. Mater., 2010, vol. 55, pp. 441–47.Google Scholar
  40. 40.
    Y. Kawashita and H. Suito: ISIJ Int., 1995, vol. 35, pp. 1468–76.CrossRefGoogle Scholar
  41. 41.
    S.K. Jo, S.H. Kim, and B. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 703–09.CrossRefGoogle Scholar
  42. 42.
    J.J. Pak, Y.S. Jeong, S.J. Tae, D.S. Kim, and Y.Y. Lee: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 489–93.CrossRefGoogle Scholar
  43. 43.
    H. Wada and R.D. Pehlke: Metall. Trans. B, 1980, vol. 11B, pp. 51–56.CrossRefGoogle Scholar
  44. 44.
    T. Yoshikawa and K. Morita: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 671–80.CrossRefGoogle Scholar
  45. 45.
    J.N. DuPont, M.R. Notis, A.R. Marder, C.V. Robino, and J. R. Michael: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2785–96.CrossRefGoogle Scholar
  46. 46.
    X. Shi, S.C. Duan, W.S. Yang, H.J. Guo, and J. Guo: Metall. Mater. Trans. B, 2018, vol. 49B. pp. 1883–97.CrossRefGoogle Scholar
  47. 47.
    Y.N. Yu: Foundation of Materials Science, China Higher Education Press, Beijing, 2006.Google Scholar
  48. 48.
    X. Shi, J.Z. Wu, H.J. Guo, J. Guo, S.C. Duan, and W.S. Yang: J. Cent. S. Univ. Med. Sci., 2018, vol. 49, pp. 518–28.Google Scholar
  49. 49.
    R. Abdulrahman and A. Hendry: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1103–12.CrossRefGoogle Scholar
  50. 50.
    C. Kowanda and M. Speidel: Scripta Mater., 2003, vol. 48, pp. 1073–78CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xiao Shi
    • 1
    • 2
  • Sheng-Chao Duan
    • 1
    • 2
  • Wen-Sheng Yang
    • 1
    • 2
  • Ming-Tao Mao
    • 1
    • 2
  • Han-Jie Guo
    • 1
    • 2
    Email author
  • Jing Guo
    • 1
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology, BeijingBeijingChina
  2. 2.Beijing Key Laboratory of Special Melting and Preparation of High-End Metal MaterialsBeijingChina

Personalised recommendations