Formation Mechanisms and Microstructure Characterization of Al/Al3Ni In-situ Composite by Compound Casting

  • M. Sistaninia
  • H. DoostmohammadiEmail author
  • R. Raiszadeh


The Compound casting method was used to produce an Al/Ni bimetal composite. The mechanisms of formation of the reinforcing intermetallic phases were studied and the produced bimetal composite’s microstructure was then characterized. The results showed that the Al/Ni interface consisted of two intermetallic layers including Al3Ni2 and Al3Ni. It is suggested that the Al3Ni reinforcing particles of the composite originated from two sources. (1) Some Al3Ni particles detached from the Al3Ni layer formed at the interface between the Ni core and the Al melt and dispersed in the liquid Al and (2) Al-Al3Ni eutectic phase, which formed during the solidification process. The increase in the temperature led to the formation of more reinforcing particles and extended the depth of dispersion of the particles in the Al matrix.



  1. 1.
    M. Konieczny: Mater. Sci. Eng. A, 2013, vol. 586, pp. 11-18.CrossRefGoogle Scholar
  2. 2.
    V. C. Srivastava, T. Singh, S. Ghosh Chowdhury, V. Jindal: J. Mater. Eng. Perform., 2012, vol. 21, pp. 1912-1918.CrossRefGoogle Scholar
  3. 3.
    R. W. Richards, R. D. Jones, P. D. Clements, H. Clarke: Int. Mater. Rev., 1994, vol. 39, pp. 191-212.CrossRefGoogle Scholar
  4. 4.
    Y. B. Choi, K. Matsugi, G. Sasaki: Mater. Trans., 2013, vol. 54, pp. 595-598.CrossRefGoogle Scholar
  5. 5.
    Y. Choi, G. Sasaki, K. Matsugi, M. Lee, W. Park: in Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 2013, pp. 1447–52.Google Scholar
  6. 6.
    L. Ke, C. Huang, L. Xing, K. Huang: J. Alloys Compd., 2010, vol. 503, pp. 494-499.CrossRefGoogle Scholar
  7. 7.
    C. C. Koch: Mater. Sci. Eng., A, 1998, vol. 244, pp. 39-48.CrossRefGoogle Scholar
  8. 8.
    A. Mozaffari, M. Hosseini, H. D. Manesh: J. Alloys Compd., 2011, vol. 509, pp. 9938-9945.CrossRefGoogle Scholar
  9. 9.
    E. Hajjari, M. Divandari, S. H. Razavi, S. M. Emami, T. Homma, S. Kamado: J. Mater. Sci., 2011, vol. 46, pp. 6491-6499.CrossRefGoogle Scholar
  10. 10.
    W. Jiang, Z. Fan, C. Li: J. Mater. Process. Technol., 2015, vol. 226, pp. 25-31.CrossRefGoogle Scholar
  11. 11.
    C. Koerner, M. Schwankl, D. Himmler: J. Mater. Process. Technol., 2014, vol. 214, pp. 1094-1101.CrossRefGoogle Scholar
  12. 12.
    M. Yousefi, H. Doostmohammadi: J. Alloys Compd., 2018, vol. 766, pp. 721-728.CrossRefGoogle Scholar
  13. 13.
    M. Sistaninia, H. Doostmohammadi, M. Rezaei Estakhrouieh: Advances in Metallurgical Processes and Materials-Admet 2018, 2018.Google Scholar
  14. 14.
    R. Raiszadeh, W. D. Griffiths: Metall Mater Trans B, 2011, vol. 42, pp. 133-143.CrossRefGoogle Scholar
  15. 15.
    I. Barin: Thermochemical data of pure substances., 3rd ed., Weinheim, Cambridge, UK, 1995.CrossRefGoogle Scholar
  16. 16.
    H. Baker, O. Hiroaki. ASM Handbook. Alloy Phase Diagrams. ASM International, Materials Park, Ohio 44073-0002, 1992, vol. 3.Google Scholar
  17. 17.
    V.I. Dybkov. Reaction Diffusion and Solid State Chemical Kinetics: Handbook. Trans Tech Publ., 2010, p. 312.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • M. Sistaninia
    • 1
  • H. Doostmohammadi
    • 1
    Email author
  • R. Raiszadeh
    • 1
  1. 1.Department of Metallurgy and Materials Science, School of EngineeringShahid Bahonar University of KermanKermanIran

Personalised recommendations