Advertisement

Numerical Prediction of Oscillation Behaviors of a Multiphase Core–Shell Droplet During Interfacial Tension Measurement

  • Kaushal J. Sumaria
  • Robert W. Hyers
  • Jonghyun LeeEmail author
Article
  • 10 Downloads

Abstract

Interfacial tension between molten high-temperature materials is to be measured using the electrostatic levitation furnace (ELF) and the electromagnetic levitator (ISS-EML) aboard the International Space Station. A levitated compound droplet of a concentric core–shell structure is excited either by an impulsive electromagnetic field or by a superimposed electrostatic field. The oscillation behavior of the compound droplet is analyzed to measure interfacial tension at the interface of the two phases. In support of the space experiments, a computational fluid dynamic model was developed to characterize the oscillation behavior of multiphase core–shell droplet. The developed model predicted the interfacial tension between molten copper-rich and cobalt-rich phases with a difference of 3.3 pct compared to the values reported in literature. The developed model is being utilized to investigate the influence of various test parameters on measured surface tension and also being extended for molten steel–molten slag systems.

Notes

Acknowledgments

This research has been funded by NASA under Grant NNX14AR85G.

References

  1. 1.
    M. Watanabe, K. Onodera, S. Ueno, T. Tsukada, T. Tanaka, H. Tamaru, and T. Ishikawa: Proc. 10th Int. Conf. Molten Slags, Fluxes and Salts, 2016, pp. 1245–52.Google Scholar
  2. 2.
    H. Tamaru, C. Koyama, H. Saruwatari, Y. Nakamura, T. Ishikawa, and T. Takada, Microgravity Sci. Technol., 2018, vol. 30, pp. 1-9.CrossRefGoogle Scholar
  3. 3.
    I. Egry, Z. Metallkd., 2002, vol. 93, pp. 528-531.CrossRefGoogle Scholar
  4. 4.
    K. Sumaria, R. W. Hyers, and J. Lee, Mater. Process. Fundam., 2017, pp. 65–72.Google Scholar
  5. 5.
    I. Egry, L, Ratke, M. Kolbe, D. Chatain, S. Curiotto, L, Battezzati, E. Johnson, and N. Pryds, J. Mater. Sci., 2010, vol. 45, pp. 1979-1985.CrossRefGoogle Scholar
  6. 6.
    T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals, Oxford University Press,, New York, NY, 1988.Google Scholar
  7. 7.
    W.-K. Rhim, K. Ohsaka, P.-F. Paradis, and R. E. Spjut, Rev. Sci. Instrum., 1999, vol. 70, pp. 2796-2801.CrossRefGoogle Scholar
  8. 8.
    A. Rulison, J. L. Watkins, and B. Zambrano, Rev. Sci. Instrum., 1997, vol. 68, pp. 2856-2863.CrossRefGoogle Scholar
  9. 9.
    E. H. Brandt, Science, 1989, vol. 243, pp. 349-355.CrossRefGoogle Scholar
  10. 10.
    W. A. Peifer, JOM, 1965, vol. 17, pp. 487-493.CrossRefGoogle Scholar
  11. 11.
    P. M. Gammel, A. P. Croonquist, and T. G. Wang, J. Acoust. Soc. Am., 1988, vol. 83, pp. 496-501.CrossRefGoogle Scholar
  12. 12.
    D. A. Winborne, P. C. Nordine, D. E. Rosner, and N. F. Marley, Metall. Trans., 1976, vol. 7B, pp. 711-713.CrossRefGoogle Scholar
  13. 13.
    W. A. Oran and L. H. Berge, Rev. Sci. Instrum., 1982, vol. 53, pp. 851-853.CrossRefGoogle Scholar
  14. 14.
    P.-F. Paradis, T. Ishikawa, J. Yu, and S. Yoda, Rev. Sci. Instrum., 2001, vol. 72, pp. 2811-2815.CrossRefGoogle Scholar
  15. 15.
    F. R. S. Rayleigh, Proc. R. Soc. Lond., 1879, 29, 196–99Google Scholar
  16. 16.
    H. Lamb, Proc. Lond. Math. Soc., 1881, vol. 13, no. 1, pp. 51-66.CrossRefGoogle Scholar
  17. 17.
    P. V. R. Suryanarayana and Y. Bayazitoglu, Int. J. Thermophys., 1991, vol. 12, pp. 137-151.CrossRefGoogle Scholar
  18. 18.
    R. W. Hyers, G. Trapaga, and B. Abedian, Metall. Mater. Trans., 2003, vol. 34B, pp. 29-36.CrossRefGoogle Scholar
  19. 19.
    R. W. Hyers, D. M. Matson, K. F. Kelton, and J. R. Rogers, Ann. NY Acad. Sci., 2004, vol. 1027, pp. 474-494.CrossRefGoogle Scholar
  20. 20.
    R. W. Hyers, Meas. Sci. Technol., 2005, vol. 16, pp. 394-401.CrossRefGoogle Scholar
  21. 21.
    X. Xiao, R. W. Hyers, R. Wunderlich, and D. M. Matson, App. Phys. Lett., 2018, vol. 113, art. no. 011903.CrossRefGoogle Scholar
  22. 22.
    S. R. Berry, R. W. Hyers, L. M. Racz, and B. Abedian, Int. J. Thermophys., 2005, vol. 26, pp. 1565-1581.CrossRefGoogle Scholar
  23. 23.
    W. Song, L. Tang, X. Zhu, Y. Wu, Z. Zhu, and S. Koyama, Fuel, 2010, vol. 89, pp. 1709-1715.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Kaushal J. Sumaria
    • 1
  • Robert W. Hyers
    • 1
  • Jonghyun Lee
    • 2
    • 3
    Email author
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of MassachusettsAmherstUSA
  2. 2.Department of Mechanical EngineeringIowa State UniversityAmesUSA
  3. 3.Division of Materials Science and EngineeringAmes LaboratoryAmesUSA

Personalised recommendations