Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2647–2666 | Cite as

Basic Oxygen Furnace: Assessment of Recent Physicochemical Models

  • Lotte De VosEmail author
  • Inge BellemansEmail author
  • Carina Vercruyssen
  • Kim VerbekenEmail author
Article
  • 134 Downloads

Abstract

Modeling of the basic oxygen furnace (BOF) process, both for online monitoring and fundamental research, has gained importance in steelmaking industry over the past few decades. Especially models integrating fundamental physicochemical relations are appealing. Even though a vast amount of these kind of models and submodels can be found in the literature, no recent review paper is available which thoroughly discusses the most up-to-date BOF modeling methods. This study aims to do so. In the introductory chapters, an overview is given on the assumptions and models for underlying BOF phenomena, which are frequently used in the BOF models and submodels. Focus was put on six models with emphasis on the chemical aspect of the BOF process. For each model, its assumptions are given and subsequently evaluated, highlighting both their strengths and limitations. The six different models are also compared with each other. Finally, opportunities for future research are discussed.

Notes

Acknowledgments

This study was supported by VLAIO, the Flanders Innovation & Entrepreneurship Agency, in cooperation with ArcelorMittal under Grant HBC.2017.0205. I. Bellemans holds a research grant from Ghent University (BOF17/PDO/012). L. De Vos wants to thank S. De Clercq for proofreading of the manuscript.

References

  1. 1.
    World Steel Association: World steel in figures 2018. https://www.worldsteel.org/. Accessed 16 Jan 2019.
  2. 2.
    R.D. Pehlke, W.F. Porter, R.F. Urban, and J.M. Gaines: BOF Steelmaking, Introduction, Theory and Design, vol. 1, The Iron and Steel Institute of the American Institute of Mining, New York, 1974.Google Scholar
  3. 3.
    E.T. Turkdogan: Fundamentals of Steelmaking, The Institute of Materials, London, 1996.Google Scholar
  4. 4.
    S. Seetharaman, A. McLean, R. Guthrie, and S. Sridhar: Treatise on Process Metallurgy, vol. 2, Elsevier, Oxford, 2013.Google Scholar
  5. 5.
    J. Martinsson and D. Sichen: ISIJ International, 2019, vol. 59, pp. 46–50.Google Scholar
  6. 6.
  7. 7.
    7 H.W. Meyer, W.F. Porter, G.C. Smith, and J. Szekely: JOM, 1968, vol. 20, pp. 35–42.Google Scholar
  8. 8.
    R. Sarkar, P. Gupta, S. Basu, and N.B. Ballal: Metall. Mater. Trans. B, 2015, vol. 46, pp. 961–76.Google Scholar
  9. 9.
    B.K. Rout, G. Brooks, M.A. Rhamdhani, Z. Li, F.N.H. Schrama, and J. Sun: Metall. Mater. Trans. B, 2018, vol. 49, pp. 537–57.Google Scholar
  10. 10.
    B.K. Rout, G. Brooks, and M. Rhamdhani: AISTech 2015 Iron and Steel Technology Conference, 2015, pp. 3225–37.Google Scholar
  11. 11.
    11 E. Chen and K.S. Coley: Ironmaking & Steelmaking, 2010, vol. 37, pp. 541–545.Google Scholar
  12. 12.
    N. Dogan: PhD thesis, Swinburne University of Technology, 2011.Google Scholar
  13. 13.
    A.I. van Hoorn, J.T. Konynenburg, and P.J. Kreyger: in The Role of Slag in Basic Oxygen Steelmaking Processes, W.K. Lu, ed., McMaster University Press, Toronto, 1976.Google Scholar
  14. 14.
    A.I. Hoorn, J.T. Konijnenburg, and P.J. Kreijger: Proceedings McMaster Symposium on Iron and Steelmaking, 1976, p. 1–2.Google Scholar
  15. 15.
    15 C. Cicutti, M. Valdez, T. Perez, R. Donayo, and J. Petroni: Latin American applied research, 2002, vol. 32, pp. 237–240.Google Scholar
  16. 16.
    K.S. Coley: Journal of Mining and Metallurgy B: Metallurgy, 2013, vol. 49, pp. 191–9.Google Scholar
  17. 17.
    17 Q. Li, M. Li, S. Kuang, and Z. Zou: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1494–509.Google Scholar
  18. 18.
    18 N.A. Molloy: Journal of the iron and steel institute, 1970, vol. 208, p. 943-50.Google Scholar
  19. 19.
    19 H.C. Araújo, E.F. Rodrigues, and E.M. Leal: REM - International Engineering Journal, 2018, vol. 71, pp. 53–7.Google Scholar
  20. 20.
    20 N. Asahara, K. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki: steel research international, 2011, vol. 82, pp. 587–94.Google Scholar
  21. 21.
    21 R. Sambasivam, S.N. Lenka, F. Durst, M. Bock, S. Chandra, and S.K. Ajmani: Metall. Mater. Trans. B, 2007, vol. 38, pp. 45–53.Google Scholar
  22. 22.
    22 S.C. Koria and K.W. Lange: Steel Research, 1987, vol. 58, pp. 421–6.Google Scholar
  23. 23.
    D. Mombelli, C. Mapelli, S. Barella, A. Gruttadauria, R. Sosio, G. Valentino, and V. Ancona: Steel Res. Int., 2018, vol. 89, p. 1700467.Google Scholar
  24. 24.
    K.S. Coley, E. Chen, and M. Pomeroy: in Celebrating the Megascale, P.J. Mackey, E.J. Grimsey, R.T. Jones, and G.A. Brooks, eds., Springer, New York, 2016, pp. 289–302.Google Scholar
  25. 25.
    B.K. Rout, G. Brooks, Subagyo, M.A. Rhamdhani, and Z. Li: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3350–61.Google Scholar
  26. 26.
    26 Q.L. He and N. Standish: ISIJ International, 1990, vol. 30, pp. 305–9.Google Scholar
  27. 27.
    R. Li and R.L. Harris: Pyrometallurgy 95 Conference Proceedings, IMM, London, 1995, p. 107.Google Scholar
  28. 28.
    B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice-Hall, New York, 1993.Google Scholar
  29. 29.
    G. Subagyo, G.A. Brooks, K.S. Coley, and G.A. Ions: ISIJ Int., 2003, vol. 43, pp. 983–9.Google Scholar
  30. 30.
    S. Sabah, M. Alam, G. Brooks, and J. Naser: Scanmet IV 4th International Conference, Lulea, Sweden, 2012.Google Scholar
  31. 31.
    31 G. Brooks, Y. Pan, and K. Coley: Metall. Mater. Trans. B, 2005, vol. 36, pp. 525–535.Google Scholar
  32. 32.
    32 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ international, 2011, vol. 51, pp. 1086–1092.Google Scholar
  33. 33.
    33 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ international, 2011, vol. 51, pp. 1093–1101.Google Scholar
  34. 34.
    34 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ international, 2011, vol. 51, pp. 1102–1109.Google Scholar
  35. 35.
    N. Dogan, G. Brooks, and M. Rhamdhani: Faculty of Engineering - Papers (Archive), 2010, pp. 1091–1101.Google Scholar
  36. 36.
    36 S.C. Koria and K.W. Lange: Metall. Mater. Trans. B, 1984, vol. 15, pp. 109–16.Google Scholar
  37. 37.
    37 E.W. Mulholland, G.S.F. Hazeldean, and M.W. Davies: J. Iron Steel Inst., 1973, vol. 211, pp. 632–639.Google Scholar
  38. 38.
    38 C.L. Molloseau and R.J. Fruehan: Metall. Mater. Trans. B, 2002, vol. 33, pp. 335–44.Google Scholar
  39. 39.
    39 B. Sarma, A.W. Cramb, and R.J. Fruehan: Metall. Mater. Trans. B, 1996, vol. 27, pp. 717–30.Google Scholar
  40. 40.
    40 H. Sun: ISIJ International, 2006, vol. 46, pp. 1560–9.Google Scholar
  41. 41.
    41 K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2343–53.Google Scholar
  42. 42.
    M.-A. Van Ende and I.-H. Jung: in Computational Materials System Design, D. Shin and J. Saal, eds., Springer, Cham, 2018, pp. 47–66.Google Scholar
  43. 43.
    43 A. Kruskopf and V.-V. Visuri: Metall. Mater. Trans. B, 2017, vol. 48, pp. 3281–300.Google Scholar
  44. 44.
    44 J. Ruuska, A. Sorsa, J. Lilja, and K. Leiviskä: IFAC-PapersOnLine, 2017, vol. 50, pp. 13784–9.Google Scholar
  45. 45.
    45 F. He and L. Zhang: Journal of Process Control, 2018, vol. 66, pp. 51–8.Google Scholar
  46. 46.
    46 C. Kattenbelt and B. Roffel: Metall. Mater. Trans. B, 2008, vol. 39, pp. 764–9.Google Scholar
  47. 47.
    47 M.-A. van Ende, Y.-M. Kim, M.-K. Cho, J. Choi, and I.-H. Jung: Metall. Mater. Trans. B, 2011, vol. 42, pp. 477–89.Google Scholar
  48. 48.
    B. Deo and A.K. Shukla: 5th International Congress on the Science and Technology of Steelmaking, Dresden, Germany, 2012.Google Scholar
  49. 49.
    49 C. Chigwedu, J. Kempken, and W. Pluschkell: Stahl und Eisen, 2006, vol. 126, pp. 25–31.Google Scholar
  50. 50.
    C. Kattenbelt: PhD thesis, University of Twente, 2008.Google Scholar
  51. 51.
    51 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ International, 2009, vol. 49, pp. 1474–82.Google Scholar
  52. 52.
    G.A. Brooks, M.A. Rhamdhani, K.S. Coley, G. Subagyo, and Y. Pan: Metall. Mater. Trans. B, 2009, vol. 40, pp. 353–62.Google Scholar
  53. 53.
    53 D.R. Sain and G.R. Belton: Metall. Mater. Trans. B, 1976, vol. 7, pp. 235–44.Google Scholar
  54. 54.
    54 H.G. Lee and Y.K. Rao: Ironmaking & Steelmaking, 1988, vol. 15, pp. 238–243.Google Scholar
  55. 55.
    55 P.A. Distin, G.D. Hallett, and F.D. Richardson: J Iron Steel Inst, 1968, vol. 206, pp. 821–833.Google Scholar
  56. 56.
    56 D.R. Sain and G.R. Belton: Metall. Mater. Trans. B, 1978, vol. 9, pp. 403–7.Google Scholar
  57. 57.
    H. Lohe: VDI-Zeitschrift, 1967.Google Scholar
  58. 58.
    B.K. Rout, G. Brooks, M. Akbar-Rhamdhani, Z. Li, F.N.H. Schrama, and A. Overbosch: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1022–33.Google Scholar
  59. 59.
    B.K. Rout, G.A. Brooks, Z. Li, and M.A. Rhamdhani: AISTech 2016 Proceedings, 2016, pp. 1019–26.Google Scholar
  60. 60.
    B.K. Rout, G. Brooks, M. Akbar-Rhamdhani, Z. Li, F.N.H. Schrama, and W. van der Knoop: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2191–2208.Google Scholar
  61. 61.
    61 K. Ito and R.J. Fruehan: Metall. Mater. Trans. B, 1989, vol. 20, pp. 509–14.Google Scholar
  62. 62.
    62 B.T. Chao: Journal of Heat Transfer, 1969, vol. 91, pp. 273–280.Google Scholar
  63. 63.
    63 A.K. Hewage, B.K. Rout, G. Brooks, and J. Naser: Ironmaking & Steelmaking, 2016, vol. 43, pp. 358–370.Google Scholar
  64. 64.
    64 K.-C. Chou, U.B. Pal, and R.G. Reddy: ISIJ international, 1993, vol. 33, pp. 862–868.Google Scholar
  65. 65.
    65 K. Narita, T. Makino, H. Matusumo, A. Hikosa, and J. Katsuda: Tetsu-to-Hagané, 1983, vol. 69, pp. 1722–1729.Google Scholar
  66. 66.
    66 H. Suito and R. Inoue: ISIJ international, 1995, vol. 35, pp. 266–271.Google Scholar
  67. 67.
    F.D. Richardson: Physical Chemistry of Melts in Metallurgy, Academic Press (Elsevier), London, 1974.Google Scholar
  68. 68.
    68 Y. Ogasawara, Y. Miki, Y. Uchida, and N. Kikuchi: ISIJ international, 2013, vol. 53, pp. 1786–1793.Google Scholar
  69. 69.
    69 S.-M. Jung, C.-H. Rhee, and D.-J. Min: ISIJ International, 2002, vol. 42, pp. 63–70.Google Scholar
  70. 70.
    70 J.M. Park: Steel Research, 2002, vol. 73, pp. 39–43.Google Scholar
  71. 71.
    71 C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, and J. Melançon: Calphad, 2016, vol. 54, pp. 35–53.Google Scholar
  72. 72.
    Y. Lytvynyuk, J. Schenk, M. Hiebler, and A. Sormann: steel research international, 2014, vol. 85, pp. 537–543.Google Scholar
  73. 73.
    73 Y. Lytvynyuk, J. Schenk, M. Hiebler, and A. Sormann: steel research international, 2014, vol. 85, pp. 544–563.Google Scholar
  74. 74.
    Y. Lytvynyuk, J Schenk, M. Hiebler, and H. Mizelli: 6th European Oxygen Steelmaking Conference, Stockholm, Sweden, 2011.Google Scholar
  75. 75.
    B.M. Boychenko, V.B. Okhotskiy, and P.S. Kharlashin: Dnipro-VAL: Dnipropetrovsk, Ukraine.Google Scholar
  76. 76.
    76 S. Ohguchi, D.G.C. Robertson, B. Deo, P. Grieveson, and J.H. Jeffes: Ironmaking & Steelmaking, 1984, vol. 85, pp. 202–13.Google Scholar
  77. 77.
    The Japan Society for the Promotion of Science and The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, 1988.Google Scholar
  78. 78.
    78 G.K. Sigworth and J.F. Elliott: Metal Science, 1974, vol. 8, pp. 298–310.Google Scholar
  79. 79.
    V.A. Grigoryan, L.N. Belyanchikov, and A.Y. Stomakhin: Gases in Steel and Metal Quality, Metallurgiya, Moscow, 1983.Google Scholar
  80. 80.
    80 S. Kitamura, H. Shibata, and N. Maruoka: steel research international, 2008, vol. 79, pp. 586–90.Google Scholar
  81. 81.
    81 S. Kitamura, T. Kitamura, K. Shibata, Y. Mizukami, S. Mukawa, and J. Nakagawa: ISIJ international, 1991, vol. 31, pp. 1322–1328.Google Scholar
  82. 82.
    E.T. Turkdogan, R.J. Fruehan, and R.J. Fruehan: The Making, Shaping and Treating of Steel, Steelmaking and Refining, Vol. 2, AISE Steel Foundation, Pittsburgh, 1998.Google Scholar
  83. 83.
    83 E.T. Turkdogan: ISIJ International, 2001, vol. 41, pp. 930–2.Google Scholar
  84. 84.
    84 A. Kruskopf: Metall. Mater. Trans. B, 2017, vol. 48, pp. 619–31.Google Scholar
  85. 85.
    85 A. Kruskopf: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1195–206.Google Scholar
  86. 86.
    86 A. Chatterjee, N.-O. Lindfors, and J. Wester: SEAISI Q., July 1976, 5-3, 6-19.Google Scholar
  87. 87.
    87 M.H.A. Piro, S. Simunovic, T.M. Besmann, B.J. Lewis, and W.T. Thompson: Computational Materials Science, 2013, vol. 67, pp. 266–72.Google Scholar
  88. 88.
    88 M.H.A. Piro and S. Simunovic: Calphad, 2012, vol. 39, pp. 104–10.Google Scholar
  89. 89.
    89 J.R. Taylor and A.T. Dinsdale: Calphad, 1990, vol. 14, pp. 71–88.Google Scholar
  90. 90.
    90 S. Petersen and K. Hack: International Journal of Materials Research, 2007, vol. 98, pp. 935–45.Google Scholar
  91. 91.
    Schlackenatlas, Düsseldorf, Stahleisen, 1981.Google Scholar
  92. 92.
    92 M.-A. Van Ende and I.-H. Jung: Metall. Mater. Trans. B, 2017, vol. 48, pp. 28–36.Google Scholar
  93. 93.
    M.-A. Van Ende and I.-H. Jung: Proceedings Asia Steel International Conference 2015, The Iron and Steel Institute of Japan, Yokohama, 2015.Google Scholar
  94. 94.
    94 A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31, pp. 651–9.Google Scholar
  95. 95.
    95 A.D. Pelton and P. Chartrand: Metall and Mat Trans A, 2001, vol. 32, pp. 1355–60.Google Scholar
  96. 96.
    96 P. Chartrand and A.D. Pelton: Metall and Mat Trans A, 2001, vol. 32, pp. 1397–407.Google Scholar
  97. 97.
    97 A.D. Pelton, P. Chartrand, and G. Eriksson: Metall and Mat Trans A, 2001, vol. 32, pp. 1409–16.Google Scholar
  98. 98.
    98 M. Hillert: Journal of Alloys and Compounds, 2001, vol. 320, pp. 161–76.Google Scholar
  99. 99.
    99 C.W. Bale and A.D. Pelton: Metall and Mat Trans A, 1990, vol. 21, pp. 1997–2002.Google Scholar
  100. 100.
    100 I.-H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35, pp. 493–507.Google Scholar
  101. 101.
    H. Gaye, M. Wanin, P. Gugliermina, and P. Schittly: Rev. Metall., 1985, vol. 82, p. 121.Google Scholar
  102. 102.
    102 A.N. Grundy, H. Liu, I.-H. Jung, S.A. Decterov, and A.D. Pelton: IJMR, 2008, vol. 99, pp. 1185–94.Google Scholar
  103. 103.
    103 A.N. Grundy, I.-H. Jung, A.D. Pelton, and S.A. Decterov: IJMR, 2008, vol. 99, pp. 1195–209.Google Scholar
  104. 104.
    104 A.N. Grundy, I.-H. Jung, A.D. Pelton, and S.A. Decterov: International Journal of Materials Research, 2008, vol. 99, pp. 1195–1209.Google Scholar
  105. 105.
    105 S. Khadhraoui, H.-J. Odenthal, S. Das, M. Schlautmann, K. Hack, B. Glaser, and R. Woolf: La Metallurgia Italiana, 2018, vol. 11/12, pp. 5–16.Google Scholar
  106. 106.
    M. Schlautmann, B. Kleimt, S. Khadhraoui, K. Hack, P. Monheim, B. Glaser, R. Antonic, M. Adderley, and F. Schrama: 3rd European Steel Technology and Application Days (ESTAD), Vienna, Austria, 2017.Google Scholar
  107. 107.
    107 F. Pahlevani, S. Kitamura, H. Shibata, and N. Maruoka: steel research international, 2010, vol. 81, pp. 617–22.Google Scholar
  108. 108.
    108 D. Baricová, A. Pribulová, P. Futáš, B. Buľko, P. Demeter, D. Baricová, A. Pribulová, P. Futáš, B. Buľko, and P. Demeter: Metals, 2018, vol. 8, p. 844.Google Scholar
  109. 109.
    109 K.C. Mills and B.J. Keene: International Materials Reviews, 1987, vol. 32, pp. 1–120.Google Scholar
  110. 110.
    S.A. Decterov, A.N. Grundy, I.-H. Jung, and A.D. Pelton: AIP Conference Proceedings, vol. 963, AIP, 2007, pp. 404–07.Google Scholar
  111. 111.
    111 A. Kondratiev, P.C. Hayes, and E. Jak: ISIJ international, 2006, vol. 46, pp. 368–374.Google Scholar
  112. 112.
    112 G.-H. Zhang, K.-C. Chou, and K. Mills: Metall. Mater. Trans. B, 2014, vol. 45, pp. 698–706.Google Scholar
  113. 113.
    113 Z. Liu, L. Pandelaers, B. Blanpain, and M. Guo: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2469–86.Google Scholar
  114. 114.
    114 R. Roscoe: British Journal of Applied Physics, 1952, vol. 3, p. 267.Google Scholar
  115. 115.
    115 A. Kondratiev and E. Jak: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1027–1032.Google Scholar
  116. 116.
    116 M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani: ISIJ International, 2007, vol. 47, pp. 935–9.Google Scholar
  117. 117.
    117 Butler John Alfred Valentine and Kendall James Pickering: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1932, vol. 135, pp. 348–75.Google Scholar
  118. 118.
    118 S.-K. Kim, W. Wang, and Y.-B. Kang: Met. Mater. Int., 2015, vol. 21, pp. 765–74.Google Scholar
  119. 119.
    119 M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ International, 2007, vol. 47, pp. 38–43.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials, Textiles and Chemical EngineeringGhent UniversityGhentBelgium
  2. 2.ArcelorMittal GentGentBelgium

Personalised recommendations