Accurate Density Calculation for Molten Slags in SiO2-Al2O3-CaO-MgO-‘FeO’-‘Fe2O3’ Systems

  • Jianjiang Xin
  • Lei GanEmail author
  • Nan Wang
  • Min Chen


A simple and accurate density calculation model for molten slags containing iron oxides in SiO2-Al2O3-CaO-MgO-‘FeO’-‘Fe2O3’ systems is established in the present study, by extending a previous model developed for SiO2-Al2O3-CaO-MgO systems. To quantitate the iron oxides in slags, a new method is proposed to recalculate all the iron oxides as ‘FeO’ and ‘Fe2O3,’ which represent the iron oxides in equilibrium with metallic iron and the air atmosphere, respectively. This method is essentially different from most of the other models that dealt with ferrous (FeO) and ferric (Fe2O3) iron oxides. A total of 860 experimental data points for iron oxide-containing melts are critically collected for the optimization of the model parameters. The model achieves an excellent agreement with literature values with an average error of 1.96 pct and an overall absolute error of 0.092 g/cm3. The compositional dependences from unary to multicomponent systems are discussed using the present model. The results show that the densities always increase with the increasing ‘FeO’ or ‘Fe2O3,’ and the substitution of ‘FeO’ by ‘Fe2O3’ will cause a decrease in density. In the multicomponent systems, SiO2 tends to have a larger impact on the density of ‘Fe2O3’-containing systems compared with ‘FeO’-containing systems.



  1. 1.
    Y. Linard, H. Nonnet, and T. Advocat: J. Non-Cryst. Solids, 2008, vol. 354, pp. 4917–26.CrossRefGoogle Scholar
  2. 2.
    J.F. Xu, K. Wan, J.Y. Zhang, Y. Chen, and M.Q. Sheng: J. South. Afr. Inst. Min. Metall., 2015, vol. 115, pp. 767–72.CrossRefGoogle Scholar
  3. 3.
    R. A. Lange: Contrib. Mineral. Petrol., 1977, vol. 130, pp. 1–11CrossRefGoogle Scholar
  4. 4.
    P. Courtial and D.B. Dingwell: Am. Mineral., 1999, vol. 84, pp. 465–76.CrossRefGoogle Scholar
  5. 5.
    K.C. Mills and B.J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1–120.CrossRefGoogle Scholar
  6. 6.
    K.C. Mills, S. Karagadde, P.D. Lee, L. Yuan, and F. Shahbazian: ISIJ Int., 2016, vol. 56, pp. 264–73.CrossRefGoogle Scholar
  7. 7.
    J.F. Xu, J.Y. Zhang, J. Chang, T. Lei, and K.C. Chou: J. Iron. Steel. Res. Int., 2012, vol. 19, pp. 26–32.CrossRefGoogle Scholar
  8. 8.
    G.H. Zhang and K.C. Chou: J. Iron. Steel. Res. Int., 2010, vol. 17, pp. 1–4.CrossRefGoogle Scholar
  9. 9.
    G.H. Zhang and K.C. Chou: Fluid Phase Equilibria, 2009, vol. 286, pp. 28–32.CrossRefGoogle Scholar
  10. 10.
    M. Persson, J. Zhang, and S. Seetharaman: Steel. Res. Int., 2007, vol. 78, pp. 290–98.CrossRefGoogle Scholar
  11. 11.
    M. Persson, T. Matsushita, T. Zhang, and S. Seetharaman: Steel. Res. Int., 2007, vol. 78, pp. 102–08.CrossRefGoogle Scholar
  12. 12.
    K.C. Chou, X. Zhong, and K. Xu: Metall. Mater. Trans. B, 2004, vol. 35, pp. 715–20.CrossRefGoogle Scholar
  13. 13.
    P. Courtial and D.B. Dingwell: Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3685–95.CrossRefGoogle Scholar
  14. 14.
    K. Nakajima: Tetsu- to- Hagane, 1994, vol. 80, pp. 593–98.CrossRefGoogle Scholar
  15. 15.
    R.A. Lange and I.S.E. Carmichael: Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 2931–46.CrossRefGoogle Scholar
  16. 16.
    Y. Bottinga and D.F. Weill: Amer. J. Sci., 1970, vol. 269, pp. 169–82.CrossRefGoogle Scholar
  17. 17.
    Q.F. Shu and K.C. Chou: Ironmaking. Steelmaking, 2013, vol. 40, pp. 571–77.CrossRefGoogle Scholar
  18. 18.
    E. Thibodeau, A.E. Gheribi, and I.H. Jung: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1187–202.CrossRefGoogle Scholar
  19. 19.
    J. Xin, L. Gan, L. Jiao, and C. Lai: ISIJ Int., 2017, vol. 57, pp. 1340–49.CrossRefGoogle Scholar
  20. 20.
    N. Bowen and J. Schairer: Amer. J. Sci., 1932, vol. 24, pp. 177–213.CrossRefGoogle Scholar
  21. 21.
    N.L. Bowen, J.F. Schairer, and E. Posnjak: Amer. J. Sci., 1933, vol. 26, pp. 193–284.CrossRefGoogle Scholar
  22. 22.
    J.F. Schairer: J. Am. Ceram. Soc., 1942, vol. 25, pp. 241–74.CrossRefGoogle Scholar
  23. 23.
    J. Schairer and E. Osborn: J. Am. Ceram. Soc., 1950, vol. 33, pp. 160–67.CrossRefGoogle Scholar
  24. 24.
    A. Muan: J. Am. Ceram. Soc., 1957, vol. 40, pp. 121–33.CrossRefGoogle Scholar
  25. 25.
    B. Phillips and A. Muan: J. Am. Ceram. Soc., 1959, vol. 42, pp. 413–23.CrossRefGoogle Scholar
  26. 26.
    J.M. Bockris, J. Mackenzie, and J. Kitchener: Trans. Faraday Soc., 1955, vol, 51, pp. 1734–48.CrossRefGoogle Scholar
  27. 27.
    Y. Lee and D. Gaskell: Met. Trans., 1974, vol. 5, pp. 853–60.CrossRefGoogle Scholar
  28. 28.
    K. Ogino, M. Hirano, and A. Adachi: Tech. Rep. Osaka. Univ., 1974, vol. 24, pp. 49–55.Google Scholar
  29. 29.
    Y. Kawai, H. Shiraishi, and N. Yamada: Tetsu-to-Hagané, 1976, vol. 62, pp. 53–61.CrossRefGoogle Scholar
  30. 30.
    Y. Shiraishi, K. Ikeda, A. Tamura, and T. Saito: Tran. JIM, 1978, vol. 19, pp. 264–74.CrossRefGoogle Scholar
  31. 31.
    V.M. Lopatin, Y.P. Nikitin, L.N. Barmin, and V.I. Sokolov: Izv. Vyssh. Uchebn. Zaved., Chern. Met., 1974, vol. 12, pp. 5–8.Google Scholar
  32. 32.
    D.R. Lide: CRC handbook of chemistry and physics, 84th edn, CRC Press, Boca Raton, Florida, 2012, pp. 4-39.Google Scholar
  33. 33.
    L. Gan, J. Xin, and Y. Zhou: ISIJ Int., 2017, vol. 57, pp. 1303–12.CrossRefGoogle Scholar
  34. 34.
    S. Sumita, K.J. Morinaga, and T. Yanagase: J. Jpn. Inst. Met., 1983, vol. 47, pp. 127–31.CrossRefGoogle Scholar
  35. 35.
    R.I. Gulyaeva, S.N. Shin, P.A. Kuznetsov, and A.I. Okunev: Rasplavy, 1990, vol. 2, pp. 16–20.Google Scholar
  36. 36.
    P. Courtial, E. Ohtani, and D.B. Dingwell: Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 3111–19.CrossRefGoogle Scholar
  37. 37.
    X. Mo, I. Carmichael, M. Rivers, and J. Stebbins: Mineral Mag., 1982, vol. 45, pp. 237–45.CrossRefGoogle Scholar
  38. 38.
    K. Mori and K. Suzuki: Tetsu-to-Hagane, 1968, vol. 54, pp. 1123–27.CrossRefGoogle Scholar
  39. 39.
    S. Hara, K. Irie, D. Gaskell, and K. Ogino: Tran. JIM, 1988, vol. 29, pp. 977–89.CrossRefGoogle Scholar
  40. 40.
    J. Henderson, R.G. Hudson, R.G. Ward, and G. Derge: Trans. Met. Soc. AIME, 1961, vol. 221, pp. 807–11.Google Scholar
  41. 41.
    J. Henderson: Trans. Met. Soc. AIME, 1964, vol. 230, pp. 501–04.Google Scholar
  42. 42.
    R. Ward and P. Sachdev: Trans. Met. Soc. AIME, 1965, vol. 233, pp. 1496–99.Google Scholar
  43. 43.
    D. Gaskell and R. Ward: Trans. Met. Soc. AIME, 1967, vol. 239, pp. 249–52.Google Scholar
  44. 44.
    D. Gaskell, A. McLean, and R. Ward: Trans. Faraday Soc., 1969, vol. 65, pp. 1498–508.CrossRefGoogle Scholar
  45. 45.
    V.I. Sokolov, S.I. Popel: and O.A. Esin, Izv. Vyssh. Ucheb. Zaved., Chern. Met., 1970, vol. 13, pp. 10–15.Google Scholar
  46. 46.
    J. Holeczy, L. Bodnar, and K. Tomasek: Hutn. listy, 1972, vol. 27, pp. 364–68.Google Scholar
  47. 47.
    K. Ikeda, A. Tamura, Y. Shiraishi, and T. Saito: Sci. Rep. RITU, 1973, vol. 29, 24–36.Google Scholar
  48. 48.
    A.S. Abrosimov, E.G. Gavrin, and V.I. Eremeichenkov: Izv. Vyssh. Ucheb. Zaved., Chern. Met., 1975, vol. 8, 14–17.Google Scholar
  49. 49.
    L. Bodnar, S. Cempa, K. Tomasek, and L. Bobok: Survey of Physical Properties of Slag Systems in Copper Metallurgy. Advances in ExtractiVe Metallurgy, Imperial College of London, Inst. Min. Metall, London, 1977.Google Scholar
  50. 50.
    A.I. Karakash and P.V. Ternovoi: Izv. Vyssh. Uchebn. Zaved., Chern. Met., 1977, vol. 10, pp. 21–23.Google Scholar
  51. 51.
    Z. Yu and K. Mukai: J. Jpn. Inst. Met., 1995, vol. 59, pp. 806–13.CrossRefGoogle Scholar
  52. 52.
    C.W. Thomas: Ph.D. thesis, California Institute of Technology, 2013.Google Scholar
  53. 53.
    P. Vadasz, M. Havlik, and V. Danek: Can. Metall., 2000, vol. 39, pp. 143–52.CrossRefGoogle Scholar
  54. 54.
    P. Vadász, M. Havlík, and V. Daněk: Open Chemistry, 2006, vol. 4, pp. 174–93.CrossRefGoogle Scholar
  55. 55.
    A. Adachi and K. Ogino: Tech. Rep. Osaka. Univ., 1962, vol. 12, pp. 147–52.Google Scholar
  56. 56.
    T. Wu, A. Vishkarev, and V. Yavoiskii: Izv. Vyssh. Uchebn. Zaved. Chern. Met., 1962, vol. 5, pp. 66–75.Google Scholar
  57. 57.
    M.A. Sherstobitov, S.I. Popel, and V.I. Sokolov: Izv. Vyssh. Uchebn. Zaved. Chern. Met., 1966, vol. 9, pp. 5–8.Google Scholar
  58. 58.
    E.L. Murav’eva and L.I. Kaplun: Adgez. Rasp. Paika Mater., 1984, vol. 12, pp. 26-30.Google Scholar
  59. 59.
    X. Guo, R.A. Lange, and Y. Ai: Geochim. Cosmochim. Acta, 2013, vol. 120, pp. 206–19.CrossRefGoogle Scholar
  60. 60.
    T. Ličko, V. Daněk, and Z. Pánek: Chem. Pap., 1985, vol. 39, pp. 599–605.Google Scholar
  61. 61.
    D.B. Dingwell and M. Brearley: Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 2815–25.CrossRefGoogle Scholar
  62. 62.
    Arman, A. Okada, and H. Takebe: Fuel, 2016, vol. 182, pp. 304–13.Google Scholar
  63. 63.
    O.N. Fadeev, L.F. Khudyakov, I.D. Kashcheev, and G.P. Kharitidi: Izv. Vyssh. Uchebn. Zaved., Chern. Met., 1980, vol. 4, pp. 17–20.Google Scholar
  64. 64.
    B.A. Bryantsev: Zh. Prikl. Khim., 1968, vol. 41, pp. 2156–59.Google Scholar
  65. 65.
    M. Zielinski and B. Sikora: Prace. IMZ, 1977, vol. 29, pp. 157–65.Google Scholar
  66. 66.
    T.K. Ishchanov and K.V. Sushkov: Met. i. Metall., 1974, vol. 3, pp. 81-87.Google Scholar
  67. 67.
    S. Nelson and I. Carmichael: Contrib. Miner. Petrol., 1979, vol. 71, pp. 117–24.CrossRefGoogle Scholar
  68. 68.
    Z. Yuan, M. Sun, and X. Chen: Non-Ferrous Metals, 1988, vol. 40, pp. 58–62.Google Scholar
  69. 69.
    M.O. Chevrel, D. Giordano, M. Potuzak, P. Courtial, and D.B. Dingwell: Chem. Geol., 2013, vol. 346, pp. 93–105CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangP.R. China
  2. 2.School of Metallurgical and Chemical EngineeringJiangxi University of Science and TechnologyGanzhouP.R. China

Personalised recommendations