Advertisement

Liquid Inclusion Distortion by Lens Shape Effect: In Situ Observation and Quantification on LCAK Steels Using HT-CSLM

  • Mauro E. Ferreira
  • Petrus Christiaan PistoriusEmail author
  • Richard J. Fruehan
Communication
  • 26 Downloads

Abstract

Because of interfacial and surface tension, micron-sized liquid oxide droplets are expected to change from spherical (when fully immersed in liquid steel) to lens shape on top of steel. Inclusion sizes were measured by automated analysis of polished sections of calcium-treated aluminum-killed steel. A sample of the same steel was remelted and observed using confocal scanning laser microscopy. Droplets on the steel surface appear to have approximately twice the diameter of fully immersed spherical inclusions.

Notes

The authors thank the industrial company members of the Center for Iron and Steelmaking Research at Carnegie Mellon University for both financial and technical support of this work. The authors acknowledge the use of the Materials Characterization Facility at CMU supported by Grant MCF-677785.

References

  1. 1.
    J. Ma, B. Zhang, D. Xu, E.H. Han, and W. Ke: Int. J. Fatigue, 2010, vol. 32, pp. 1116–25.CrossRefGoogle Scholar
  2. 2.
    J.M. Zhang, S.X. Li, Z.G. Yang, G.Y. Li, W.J. Hui, and Y.Q. Weng: Int. J. Fatigue, 2007, vol. 29, pp. 765–71.CrossRefGoogle Scholar
  3. 3.
    Ø. Grong, L. Kolbeinsen, C. van der Eijk, and G. Tranell: ISIJ Int., 2006, vol. 46, pp. 824–31.CrossRefGoogle Scholar
  4. 4.
    H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936–45.CrossRefGoogle Scholar
  5. 5.
    H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 946–55.CrossRefGoogle Scholar
  6. 6.
    M. Olette: Steel Res. Int., 1988, vol. 59, pp. 246–56.CrossRefGoogle Scholar
  7. 7.
    E.W. Weisstein: Spherical Cap. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/SphericalCap.html. Last visit March 2019.
  8. 8.
    I. Egry, E. Ricci, R. Novakovic, S. Ozawa: Adv. Colloid Interface Sci., 2010, vol. 159, pp. 198-212.CrossRefGoogle Scholar
  9. 9.
    M. Wegener, L. Muhmood, S. Sun, and A. V. Deev: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 16444–56.CrossRefGoogle Scholar
  10. 10.
    S.-C. Park, H. Gaye, and H.-G. Lee: Ironmak. Steelmak., 2009, vol. 36, pp. 3–11.CrossRefGoogle Scholar
  11. 11.
    I. Jimbo, Y. Chung, and A.W. Cramb: ISIJ Int., 1996, vol. 36, pp. S42-S45.CrossRefGoogle Scholar
  12. 12.
    D. Tang, M.E. Ferreira, and P.C. Pistorius: Microsc. Microanal., 2017, vol. 23, pp. 1082–90.CrossRefGoogle Scholar
  13. 13.
    N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43, pp. 830–840.CrossRefGoogle Scholar
  14. 14.
    J. Tan and P.C. Pistorius: Metall. Mater. Trans. B, 2013, vol. 44, pp. 483-486.CrossRefGoogle Scholar
  15. 15.
    M.D. Higgins: Am. Mineral., 2000, vol. 85, pp. 1105-1116.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Center for Iron and Steelmaking Research, Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations