Assessment of Physicochemical Properties of Electrical Arc Furnace Slag and Their Effects on Foamability

  • Jung Ho Heo
  • Joo Hyun ParkEmail author


The composition of slags of an electric arc furnace (EAF) in a commercial melt shop was systematically analyzed with a focus on slag foaming. Basic behavior of FeO in an EAF slag was confirmed using fundamental thermodynamics. Monoxide ([Mg,Fe,Mn]O = M’O) and spinel ([Mg,Fe]Al2O4) phases in EAF slag were confirmed by X-ray diffraction analysis, and these results were interpreted in the context of equilibrium cooling calculation using FactSage™ software. Furthermore, the distribution of MgO with respect to the M’O-saturation limit at different basicity ratios (=CaO/SiO2=C/S) and temperatures was evaluated. In particular, the relationship between MgO and FeO for C/S ratios ranging from 1.3 to 1.6 was considered with reference to phase equilibria. Foam height was affected by slag viscosity (η) and gas generation according to changes in C/S ratio and FeO content. Foaming index (Σ) decreased with the increasing C/S ratio and FeO content. The measured foam heights were relatively higher than the calculated values, and the result indicates that the effect of M’O on slag foaming in commercial process is remarkable. Therefore, slag chemistry should be optimized based on thermodynamic considerations and thermophysical properties to achieve good foaming characteristics.



This work was partly supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (Grant Number 20172010106310) and partly by the Korea Evaluation Institute of Industrial Technology (KEIT) grant (Grant Number 10063056), funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea.


  1. 1.
    J. Bennett and K.S. Kwong: Ironmaking & Steelmaking, 2010, vol. 37, pp. 529-35.CrossRefGoogle Scholar
  2. 2.
    V. Fedina, O. Malahova and A. Sazonov: Sovremennye Naukoemkie Tehnologii (in Russian), 2005, vol. 2, pp. 71-72.Google Scholar
  3. 3.
    R.J. Fruehan and A.S. Foundation: The Making, Shaping, and Treating of Steel: Steelmaking and refining volume, AISE Steel Foundation, Pittsburgh, 1998, pp. 604-08.Google Scholar
  4. 4.
    J.J. Bikerman: Trans. Faraday Soc., 1938, vol. 34, pp. 634-38.CrossRefGoogle Scholar
  5. 5.
    J.J. Bikerman: Ind. Eng. Chem., 1965, vol. 57, pp. 56-62.CrossRefGoogle Scholar
  6. 6.
    K. Ito and R.J. Fruehan: Metall. Trans. B, 1989, vol. 20B, pp. 509-14.CrossRefGoogle Scholar
  7. 7.
    K. Ito and R.J. Fruehan: Metall. Trans. B, 1989, vol. 20B, pp. 515-21.CrossRefGoogle Scholar
  8. 8.
    R. Jiang and R.J. Fruehan: Metall. Trans. B, 1991, vol. 22B, pp. 481-89.CrossRefGoogle Scholar
  9. 9.
    B. Ozturk and R.J. Fruehan: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 1086-88.CrossRefGoogle Scholar
  10. 10.
    Y. Zhang and R.J. Fruehan: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 803-12.CrossRefGoogle Scholar
  11. 11.
    S.M. Jung and R.J. Fruehan: ISIJ Int., 2000, vol. 40, pp. 348-55.CrossRefGoogle Scholar
  12. 12.
    R. Corbari, H. Matsuura, S. Halder, M. Walker and R.J. Fruehan: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 940-48.CrossRefGoogle Scholar
  13. 13.
    S. Seetharaman, A. McLean, R. Guthrie and S. Sridhar: Treatise on Process Metallurgy, Volume 3: Industrial Processes, Part B, Elsevier, Amsterdam, 2014, pp. 1101–04.Google Scholar
  14. 14.
    C. Cooper and J. Kitchener: J. Iron Steel Inst. London, 1959, vol. 9, pp. 48-55.Google Scholar
  15. 15.
    J. Swisher and C. McCabe: Trans. TMS-AIME, 1964, vol. 230, pp. 1669-75.Google Scholar
  16. 16.
    P. Kozakevitch and T.J. John: JOM, 1969, vol. 21, pp. 57-68.CrossRefGoogle Scholar
  17. 17.
    A. Kapilashrami, M. Görnerup, S. Seetharaman and A.K. Lahiri: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 109-17.CrossRefGoogle Scholar
  18. 18.
    R.A.M. de Almeida, D. Vieira, W.V. Bielefeldt and A.C.F. Vilela: Mater. Res., 2018, vol. 21, pp. 1-8.Google Scholar
  19. 19.
    A.P. Luz, A.G.T. Martinez, F. López, P. Bonadia and V.C. Pandolfelli: Ceram. Int., 2018, vol. 44, pp. 8727-41.CrossRefGoogle Scholar
  20. 20.
    D. Vieira, R.A.M. de Almeida, W.V. Bielefeldt and A.C.F. Vilela: Mater. Res., 2016, vol. 19, pp. 1127-31.CrossRefGoogle Scholar
  21. 21.
    Y. Park and D.J. Min: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3038-46.CrossRefGoogle Scholar
  22. 22.
    J.S. Han, J.H. Heo and J.H. Park: Ceram. Int., 2019, vol. 45, pp. 10481-91.CrossRefGoogle Scholar
  23. 23.
    H. Larson and J. Chipman: JOM, 1953, vol. 5, pp. 1089-96.CrossRefGoogle Scholar
  24. 24.
    L. Yang and G.R. Belton: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 837-45.CrossRefGoogle Scholar
  25. 25.
    N. Sano: Advanced Physical Chemistry for Process Metallurgy, Academic Press, San Diego, CA, 1997, pp.46-51.Google Scholar
  26. 26.
    C.H.P. Lupis: Chemical Thermodynamics of Materials. Prentice Hall, Englewood Cliffs, NJ, 1993. pp. 155–58.Google Scholar
  27. 27.
    H.S. Kim, D.J. Min and J.H. Park: ISIJ Int., 2001, vol. 41, pp. 317-24.CrossRefGoogle Scholar
  28. 28.
    J.H. Heo, B.S. Kim and J.H. Park: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1352-63.CrossRefGoogle Scholar
  29. 29.
    A. Yamaguchi: Taikabutsu Overseas, 1984, vol. 4, pp. 32-36.Google Scholar
  30. 30.
    S. Seetharaman: Treatise on Process Metallurgy, Volume 2: Process Phenomena, Elsevier, Amsterdam, 2013. pp. 292–303.Google Scholar
  31. 31.
    J. Bygden, T. DebRoy and S. Seetharaman: Ironmaking & Steelmaking, 1994, vol. 21, pp. 318-23.Google Scholar
  32. 32.
    P. Zhang and S. Seetharaman: J. Am. Ceram. Soc., 1994, vol. 77, pp. 970-76.CrossRefGoogle Scholar
  33. 33.
    A. Chychko, L. Teng and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1078-85.CrossRefGoogle Scholar
  34. 34.
    M. Sugata, T. Sugiyama and S. Kondo: Tetsu-to-Hagane, 1972, vol. 58, pp. 1363-75.CrossRefGoogle Scholar
  35. 35.
    E.B. Pretorius and R.C. Carlisle: Iron and Steelmaker, 1999, vol. 26, pp. 79-88.Google Scholar
  36. 36.
    D.J. Min and R.J. Fruehan: Metall. Trans. B, 1992, vol. 23B, pp. 29-37.CrossRefGoogle Scholar
  37. 37.
    S.R. Story, B. Sarma, R.J. Fruehan, A.W. Cramb and G.R. Belton: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 929-32.CrossRefGoogle Scholar
  38. 38.
    K. Seo and R.J. Fruehan: ISIJ Int., 2000, vol. 40, pp. 7-15.CrossRefGoogle Scholar
  39. 39.
    J.H. Heo, Y. Chung and J.H. Park: J. Clean. Prod., 2016, vol. 137, pp. 777–87.CrossRefGoogle Scholar
  40. 40.
    J.H. Heo and J.H. Park: Calphad, 2017, vol. 58, pp. 219–28.CrossRefGoogle Scholar
  41. 41.
    J.H. Heo and J.H. Park: Calphad, 2017, vol. 58, pp. 229–38.CrossRefGoogle Scholar
  42. 42.
    M. Hanao, T. Tanaka, M. Kawamoto and K. Takatani: ISIJ Int., 2007, vol. 47, pp. 935–39.CrossRefGoogle Scholar
  43. 43.
    M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa and M. Hamalainen: ISIJ Int., 2007, vol. 47, pp. 38–43.CrossRefGoogle Scholar
  44. 44.
    L. Muhmood and S. Seetharaman: Metall. Mater. Trans. B, 2010, vol. 41, pp. 833–40.CrossRefGoogle Scholar
  45. 45.
    I.A. Aksay, J.A. Pask and R.F. Davis: J. Am. Ceram. Soc., 1979, vol. 62, pp. 332–36.CrossRefGoogle Scholar
  46. 46.
    Y. Kawai, K. Mori, H. Shiraishi and N. Yamada: Tetsu-to-Hagane, 1976, vol. 62, pp. 53–61.CrossRefGoogle Scholar
  47. 47.
    B. Mitin and Y.A. Nagibin, Russ. J. Phys. Chem., 1970, vol. 13, pp. 741–42.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Research & Development CenterLS-Nikko CopperUlsanKorea
  2. 2.Department of Materials EngineeringHanyang UniversityAnsanKorea

Personalised recommendations