Thermal Behavior During the Selective Laser Melting Process of Ti-6Al-4V Powder in the Point Exposure Scan Pattern

  • Pingmei Tang
  • Sen Wang
  • Mujun Long
  • Huamei Duan
  • Sheng Yu
  • Dengfu ChenEmail author
  • Shuqian FanEmail author


Currently, there are two main scan patterns, including the continuous exposure scan pattern and the point exposure scan pattern, during the selective laser melting (SLM) process. The point exposure scan pattern allows a three-dimensional (3-D) printer to build finer detail features as a static molten pool that is more stable than a dynamic one. However, there has been limited theoretical research on the thermal behavior characteristics during the process in the point exposure scan pattern. Therefore, in this study, the simulation of thermal behavior during SLM of Ti-6Al-4V powder in the point exposure scan pattern was performed. The temperature evolution behavior of different positions and the effects of exposure time on the temperature evolution behavior of different positions, temperature distributions, and dimensions of the molten pool were investigated. The results showed that the direct exposure position and unexposed position had significantly different temperature evolution behaviors under a given condition, and the changed exposure time had the greatest influence on the direct exposure position compared with unexposed position. Moreover, the thermal accumulation effect of a former exposure point on a later one decreased with increasing exposure time. In addition, with the increase of exposure time, the maximum temperature of the molten pool was enhanced and the surface morphology of the molten pool changed from an approximate ellipse to an approximate circle. Besides, the molten pool dimensions were found to increase with exposure time, which indicated that the exposure time played an important role in the stability of the molten pool and the metallurgical bonding in the process. Furthermore, the dimensions of the molten pool and metallurgical bonding in the cross-sectional view were obtained through experiments. Good agreement was obtained when comparing the simulated results with the experimental ones.



This work was supported by the National Natural Science Foundation of China (Grant No. 51675507) and the Strategic Pioneer Program on Space Science, Chinese Academy of Sciences (Grant No. XDA15013700).


  1. 1.
    A.K. Patnaik, N. Poondla, C.C. Menzemer, and T.S. Srivatsan: Mater. Sci. Eng. A, 2014, vol. 590, pp. 390–400.CrossRefGoogle Scholar
  2. 2.
    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.CrossRefGoogle Scholar
  3. 3.
    C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, p. 041101.CrossRefGoogle Scholar
  4. 4.
    M. Wang, W. Li, Y. Wu, S. Li, C. Cai, S. Wen, Q. Wei, Y. Shi, F. Ye, and Z. Chen: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 531–42.CrossRefGoogle Scholar
  5. 5.
    K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, and F. Rezai: Mater. Sci. Eng. A, 2018, vol. 735, pp. 182–90.CrossRefGoogle Scholar
  6. 6.
    N.J. Harrison, I. Todd, and K. Mumtaz: Acta Mater., 2015, vol. 94, pp. 59–68.CrossRefGoogle Scholar
  7. 7.
    Z. Pang, Y. Liu, M. Li, C. Zhu, S. Li, Y. Wang, D. Wang, and C. Song: Appl. Phys. A, 2019, vol. 125, p. 90.CrossRefGoogle Scholar
  8. 8.
    Y. Chen, J. Zhang, X. Gu, N. Dai, P. Qin, and L.C. Zhang: J. Alloys Compd., 2018, vol. 747, pp. 648–58.CrossRefGoogle Scholar
  9. 9.
    X. Wang, J.A. Muñiz-lerma, O. Sánchez-mata, and M.A. Shandiz: Mater. Sci. Eng. A, 2018, vol. 736, pp. 27–40.CrossRefGoogle Scholar
  10. 10.
    D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Compos. Sci. Technol., 2011, vol. 71, pp. 1612–20.CrossRefGoogle Scholar
  11. 11.
    B. Brown: Masters theses, Missouri University of Science and Technology, Laura, MI, 2014.Google Scholar
  12. 12.
    C. Qiu, M. Kindi, A. Aladawi, and I. Hatmi: Sci. Rep., 2018, 8, p. 7785CrossRefGoogle Scholar
  13. 13.
    P. Yuan and D. Gu: J. Phys. D: Appl. Phys., 2015, vol. 48, p. 035303.CrossRefGoogle Scholar
  14. 14.
    P. Wei, Z. Wei, Z. Chen, Y. He, and J. Du: Appl. Phys. A, 2017, vol. 123, p. 604.CrossRefGoogle Scholar
  15. 15.
    G. Strano, L. Hao, R.M. Everson, and K.E. Evans: J. Mater. Process. Technol., 2013, vol. 213, pp. 589–97.CrossRefGoogle Scholar
  16. 16.
    J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, and J. Sienz: Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 869–79.CrossRefGoogle Scholar
  17. 17.
    C. Kuo, C. Su, and A. Chiang: Int. J. Precis. Eng. Manuf., 2017, vol. 18, pp. 1609–18.CrossRefGoogle Scholar
  18. 18.
    L. Wang, S. Wang, and J. Wu: Opt. Laser Technol., 2017, vol. 96, pp. 88–96.CrossRefGoogle Scholar
  19. 19.
    J. Wu, L. Wang, and X. An: Optik (Stuttg)., 2017, vol. 137, pp. 65–78.CrossRefGoogle Scholar
  20. 20.
    L. Lan, L. Cody, R. Adriane, B. Doug, L. Robert, and K. Edward: Solid Freeform Fabrication 2017: Proc. 28th Ann. Int. Solid Freeform Fabrication Symp. An Additive Manuf. Conf., 2017.Google Scholar
  21. 21.
    X. Ding and L. Wang: J. Manuf. Process., 2017, vol. 26, pp. 280–89.CrossRefGoogle Scholar
  22. 22.
    Z. Li, B.-Q. Li, P. Bai, B. Liu, and Y. Wang: Materials (Basel), 2018, vol. 11, p. 1172.CrossRefGoogle Scholar
  23. 23.
    Y. Li and D. Gu: Mater. Des., 2014, vol. 63, pp. 856–67.CrossRefGoogle Scholar
  24. 24.
    D. Dai and D. Gu: Int. J. Mach. Tools Manuf., 2015, vol. 88, pp. 95–107.CrossRefGoogle Scholar
  25. 25.
    X. Li, L. Wang, L. Yang, J. Wang, and K. Li: J. Mater. Process. Technol., 2014, vol. 214, pp. 1844–51.CrossRefGoogle Scholar
  26. 26.
    A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. Golabi: Mater. Des., 2016, vol. 89, pp. 255–63.CrossRefGoogle Scholar
  27. 27.
    I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava: J. Alloys Compd., 2014, vol. 583, pp. 404–09.CrossRefGoogle Scholar
  28. 28.
    M.H. CHO, Y.C. Lim, and D.F. Farson: Weld. J., 2006, vol. 85, pp. 271–83.Google Scholar
  29. 29.
    K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead, Wiltshire, 2002.CrossRefGoogle Scholar
  30. 30.
    M. Rombouts, L. Froyen, A. Gusarov, E.H. Bentefour, and C. Glorieux: J. Appl. Phys., 2005, vol. 98, p. 013533.CrossRefGoogle Scholar
  31. 31.
    K. Dai and L. Shaw: Acta Mater., 2004, vol. 52, pp. 69–80.CrossRefGoogle Scholar
  32. 32.
    C. Panwisawas, C. Qiu, M.J. Anderson, Y. Sovani, R.P. Turner, M.M. Attallah, J.W. Brooks, and H.C. Basoalto: Comput. Mater. Sci., 2017, vol. 126, pp. 479–90.CrossRefGoogle Scholar
  33. 33.
    A. Masmoudi, R. Bolot, and C. Coddet: J. Mater. Process. Technol., 2015, vol. 225, pp. 122–32.Google Scholar
  34. 34.
    A.V. Gusarov and I. Smurov: Phys. Procedia, 2010, vol. 5, pp. 381–94.CrossRefGoogle Scholar
  35. 35.
    Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, and W.-S. Hwang: J. Mater. Process. Technol., 2018, vol. 254, pp. 72–78.CrossRefGoogle Scholar
  36. 36.
    C.D. Boley, S.C. Mitchell, A.M. Rubenchik, and S.S.Q. Wu: Appl. Opt., 2016, vol. 55, pp. 6496–6500.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingP.R. China
  2. 2.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingP.R. China
  3. 3.Chongqing Key Laboratory of Additive Manufacturing Technology and SystemsChongqingP.R. China

Personalised recommendations