A New Efficient Quantitative Multi-component Phase Field: Lattice Boltzmann Model for Simulating Ti6Al4V Solidified Dendrite Under Forced Flow

  • Weizhao Sun
  • Yu Xie
  • Rui Yan
  • Sida Ma
  • Hongbiao DongEmail author
  • Tao JingEmail author
Topical Collection: 2019 Metallurgical Processes Workshop for Young Scholars
Part of the following topical collections:
  1. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2019)


Ti6Al4V is a widely used, multi-component alloy in additive manufacturing, during which the fluid flow in the molten pool significantly affects the solidified dendrites. To predict and further control the microstructure, modeling and simulating the microstructure evolution play a critical role. In this study, a newly developed, efficient, quantitative multi-component phase-field (PF) model is coupled with a lattice Boltzmann (LB) model to simulate Ti6Al4V solidified dendrite evolution under fluid flow. The accuracy and convergence behavior of the model is validated by the Gibbs–Thomson relation at the dendrite tip. Single and multiple two-dimensional (2D) equiaxed dendrite evolution cases under forced flow were simulated. Results show that the dendrite pattern is influenced remarkably by the fluid flow. Underlying mechanisms of the asymmetrical evolution are revealed by discussing the interaction among the flow, composition distribution and dendrite morphology, quantitatively. The dendrite kinetics are also derived, which ascertains the relationship between tip velocity and undercooling and inlet velocity and is the foundation for larger-scale simulation. We believe that the coupled quantitative multi-component PF–LB framework employed in this study helps in investigating the solidified dendrite morphology evolution in a deep and quantitate manner.



This research is financially supported by the National Key Research and Development Program of China No. 2017YFB1103700, the National Science Foundation of China Nos. 51575304 and 51674153.

Supplementary material

11663_2019_1669_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)


  1. 1.
    C. Leyens and M. Peters, Titanium and titanium alloys: fundamentals and applications, John Wiley & Sons, 2003.CrossRefGoogle Scholar
  2. 2.
    2. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De and W. Zhang, Progress in Materials Science, 2018, 92, 112-224.CrossRefGoogle Scholar
  3. 3.
    3. B. E. Carroll, T. A. Palmer and A. M. Beese, Acta Materialia, 2015, 87, 309-320.CrossRefGoogle Scholar
  4. 4.
    4. Y. Ren, X. Lin, X. Fu, H. Tan, J. Chen and W. Huang, Acta Materialia, 2017, 132, 82-95.CrossRefGoogle Scholar
  5. 5.
    5. A. Yamanaka, T. Aoki, S. Ogawa and T. Takaki, Journal of Crystal Growth, 2011, 318, 40-45.CrossRefGoogle Scholar
  6. 6.
    6. W. Sun, R. Yan, Y. Zhang, H. Dong and T. Jing, Computational Materials Science, 2019, 160, 149-158.CrossRefGoogle Scholar
  7. 7.
    7. N. Provatas, N. Goldenfeld and J. Dantzig, Physical Review Letters, 1998, 80, 3308-3311.CrossRefGoogle Scholar
  8. 8.
    8. Y. Xie, H. Dong, J. Liu, R. L. Davidchack, J. A. Dantzig, G. Duggan, M. Tong and D. J. Browne, Journal of Algorithms & Computational Technology, 2013, 7, 489-507.CrossRefGoogle Scholar
  9. 9.
    9. H. L. Wei, J. W. Elmer and T. DebRoy, Acta Materialia, 2017, 126, 413-425.CrossRefGoogle Scholar
  10. 10.
    10. S. Chen, G. Guillemot and C.-A. Gandin, Acta Materialia, 2016, 115, 448-467.CrossRefGoogle Scholar
  11. 11.
    11. X. Li and W. Tan, Computational Materials Science, 2018, 153, 159-169.CrossRefGoogle Scholar
  12. 12.
    12. O. Zinovieva, A. Zinoviev and V. Ploshikhin, Computational Materials Science, 2018, 141, 207-220.CrossRefGoogle Scholar
  13. 13.
    13. W. Kurz, B. Giovanola and R. Trivedi, Acta metallurgica, 1986, 34, 823-830.CrossRefGoogle Scholar
  14. 14.
    14. H. Xing, X. Dong, J. Wang and K. Jin, Metallurgical and Materials Transactions B, 2018, 49, 1547-1559.CrossRefGoogle Scholar
  15. 15.
    15. W.-z. Sun, R. Yan, X. Wan, H.-b. Dong and T. Jing, China Foundry, 2018, 15, 422-427.CrossRefGoogle Scholar
  16. 16.
    16. D. Sun, M. Zhu, S. Pan and D. Raabe, Acta Materialia, 2009, 57, 1755-1767.CrossRefGoogle Scholar
  17. 17.
    17. A. Karma, Physical Review Letters, 2001, 87, 115701.CrossRefGoogle Scholar
  18. 18.
    18. B. Echebarria, R. Folch, A. Karma and M. Plapp, Physical Review E, 2004, 70, 061604.CrossRefGoogle Scholar
  19. 19.
    19. B. Nestler, H. Garcke and B. Stinner, Physical Review E, 2005, 71, 041609.CrossRefGoogle Scholar
  20. 20.
    20. S. G. Kim, Acta Materialia, 2007, 55, 4391-4399.CrossRefGoogle Scholar
  21. 21.
    21. P. Liu, Y. Ji, Z. Wang, C. Qiu, A. Antonysamy, L.-Q. Chen, X. Cui and L. Chen, Journal of Materials Processing Technology, 2018, 257, 191-202.CrossRefGoogle Scholar
  22. 22.
    22. S. Sahoo and K. Chou, Additive manufacturing, 2016, 9, 14-24.CrossRefGoogle Scholar
  23. 23.
    23. X. Gong and K. Chou, Jom, 2015, 67, 1176-1182.CrossRefGoogle Scholar
  24. 24.
    Y. Xie, University of Leicester, 2013.Google Scholar
  25. 25.
    25. M. Ohno and K. Matsuura, Physical Review E, 2009, 79, 031603.CrossRefGoogle Scholar
  26. 26.
    26. T. Mukherjee, W. Zhang and T. DebRoy, Computational Materials Science, 2017, 126, 360-372.CrossRefGoogle Scholar
  27. 27.
    27. J.-H. Jeong, N. Goldenfeld and J. A. Dantzig, Physical Review E, 2001, 64, 041602.CrossRefGoogle Scholar
  28. 28.
    28. T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E. M. Viggen, Springer International Publishing, 2017, 10, 978-973.Google Scholar
  29. 29.
    29. M. Ohno, Physical Review E, 2012, 86, 051603.CrossRefGoogle Scholar
  30. 30.
    30. S. G. Kim, W. T. Kim and T. Suzuki, Physical Review E, 1999, 60, 7186-7197.CrossRefGoogle Scholar
  31. 31.
    31. C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma and X. Tong, Journal of Computational Physics, 1999, 154, 468-496.CrossRefGoogle Scholar
  32. 32.
    N. Provatas and K. Elder, Phase-field methods in materials science and engineering, John Wiley & Sons, 2011.Google Scholar
  33. 33.
    33. A. Cartalade, A. Younsi and M. Plapp, Computers & Mathematics with Applications, 2016, 71, 1784-1798.CrossRefGoogle Scholar
  34. 34.
    34. D. Sun, H. Xing, X. Dong and Y. Han, International Journal of Heat and Mass Transfer, 2019, 133, 1240-1250.CrossRefGoogle Scholar
  35. 35.
    35. V. G. Ivanchenko, O. M. Ivasishin and S. L. Semiatin, Metallurgical and Materials Transactions B, 2003, 34, 911-915.CrossRefGoogle Scholar
  36. 36.
    36. A. R. A. Dezfoli, W.-S. Hwang, W.-C. Huang and T.-W. Tsai, Scientific reports, 2017, 7, 41527.CrossRefGoogle Scholar
  37. 37.
    37. W. S. Ping, L. D. Rong, G. J. Jie, L. C. Yun, S. Y. Qing and F. H. Zhi, Materials Science and Engineering: A, 2006, 426, 240-249.CrossRefGoogle Scholar
  38. 38.
    38. J. C. Ramirez and C. Beckermann, Acta Materialia, 2005, 53, 1721-1736.CrossRefGoogle Scholar
  39. 39.
    39. J. Li, Z. Wang, Y. Wang and J. Wang, Acta Materialia, 2012, 60, 1478-1493.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of Development and Application Technology of Automotive SteelBaoshan Iron & Steel Co., Ltd.ShanghaiChina
  3. 3.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations