Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2536–2546 | Cite as

In Situ Observation of Acicular Ferrite Nucleation and Growth at Different Cooling Rate in Ti-Zr Deoxidized Steel

  • Yongkun Yang
  • Dongping ZhanEmail author
  • Hong Lei
  • Guoxing Qiu
  • Yulu Li
  • Zhouhua Jiang
  • Huishu Zhang


The effects of cooling rate on acicular ferrite (AF) nucleation, growth, and inclusion characteristics in Ti-Zr deoxidation steel were studied by utilizing the high temperature confocal laser scanning microscope (HT-CLSM). The results indicated that with the increase of cooling rate, the ferrite start nucleation temperature decreased, and the difference of first nucleation temperature between AF and ferrite side plate (FSP) reduced. When the cooling rate increased to 10.0 °C/s, AF and FSP simultaneously nucleated at 564.5 °C. In addition, the AF actual growth rate rose with the increase of cooling rate and reached 30.13 µm/s at 10.0 °C/s cooling rate. The AF ratio in microstructure increased first and then decreased with the cooling rate increase and was up to the maximum 45.83 pct at 1.0 °C/s cooling rate. For inclusion characteristics, cooling rates had no obvious effect on inclusion types, but had a great influence on inclusions size distribution. With the cooling rate increase, the inclusion average diameter reduced, and diminished to 1.39 µm at 10.0 °C/s cooling rate. Finally, the AF nucleation on the Ti-Zr-Mn-O-S + TiN inclusion could be explained by the low lattice misfit between ferrite and TiN that precipitated on the Ti-Zr-Mn-O-S inclusion surface.



The authors are grateful for the support from the National Natural Science Foundation of China (No. 51874081, 51574063) and Fundamental Research Funds for the Central Universities (N150204012).


  1. 1.
    S. S. Babu, H. K. D. H. Bhadeshia:, Mater. T. JIM, 1991, vol. 32, pp. 679-88.Google Scholar
  2. 2.
    S. Ohkita, Y. Horii: ISIJ Int., 1995, vol. 35, pp. 1170-82.Google Scholar
  3. 3.
    B. W. Zhou, G. Q. Li, X. L. Wan, Y. Li, K. M. Wu: Met. Mater. Int., 2016, vol. 22, pp. 267-75.Google Scholar
  4. 4.
    Y. Shao, C. X. Liu, Z. S. Yan, H. J. Li, Y. C. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 737-44.Google Scholar
  5. 5.
    W. M. Mu, P. G. Jönsson, K. Nakajima: High Temp. Mat. Proc., 2017, vol. 36, pp. 309-25.Google Scholar
  6. 6.
    D. S. Sarma, A. V. Karasev, P. G. Jönsson: ISIJ Int., 2009, vol. 49, pp. 1063-74.Google Scholar
  7. 7.
    X. F. Zhang, P. Han, H. Terasaki, M. Sato, Y. Komizo: J. Mater. Sci. Technol., 2012, vol. 28, pp. 241-48.Google Scholar
  8. 8.
    D. Zhang, Y. Shintaku, S. Suzuki, Y. Komizo: J. Mater. Sci., 2012, vol. 47, pp. 5524-28.Google Scholar
  9. 9.
    M. M. Song, B. Song, S. H. Zhang, Z. B. Yang, Z. L. Xue, S. Q. Song, R. S. Xu, Z. B. Tong: J. Iron. Steel Res. Int., 2018, vol. 25, pp. 1033-42.Google Scholar
  10. 10.
    Z. Z. Liu, Y. Kobayashi, F. Yin, M. Kuwabara, K. Nagai: ISIJ Int., 2007, vol. 47, pp. 1781-88.Google Scholar
  11. 11.
    Q. Huang, X. H. Wang, M. Jiang, Z. Y. HU: Steel Res. Int., 2016, vol. 87, pp. 445-55.Google Scholar
  12. 12.
    M. M. Song, B. Song, C. L. Hu, W. B. Xin, G. Y. Song: ISIJ Int., 2015 vol. 55, pp. 1468-73.Google Scholar
  13. 13.
    M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, E. Rahimi: Micron, 2013, vol. 45, pp. 107-14.Google Scholar
  14. 14.
    J. Pu, S. F. Yu, Y. Y. Li: J. Alloy Compd., 2017, vol. 692, pp. 351-58.Google Scholar
  15. 15.
    J. M. Gregg, H. K. D. H. Bhadeshia: Acta Mater., 1997, vol. 45, pp. 739-48.Google Scholar
  16. 16.
    Y. Morikage, K. Oi, F. Kawabata, K. Amano: Tetsu-to-Hagané, 1998, vol. 84, pp.510-15.Google Scholar
  17. 17.
    W. Z. Mu, P. G. Jönsson, K. Nakajima: J. Mater. Sci., 2016, vol. 51, pp. 2168-80.Google Scholar
  18. 18.
    J. H. Shim, Y. W. Cho, S. H. Chung, J. D. Shim, D. N. Lee: Acta Mater., 1999, vol. 47, pp. 2751-60.Google Scholar
  19. 19.
    L. Cheng, C. Xu, L. L. Lu, L. Yu, K. M. Wu: J. Alloy Compd., 2018, vol. 742, pp. 112-22.Google Scholar
  20. 20.
    W. Z. Mu, P. G. Jönsson, K. Nakajima: ISIJ Int., 2014, vol. 54, pp. 2907-16.Google Scholar
  21. 21.
    I. Madariaga, J. L. Romero, I. Gutiérrez: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1003-15.Google Scholar
  22. 22.
    X. B. Li, Y. Min, C. J. Liu, M. F. Jiang: Steel Res. Int., 2016, vol. 87, pp. 622-32.Google Scholar
  23. 23.
    C. K. Lin, Y. C. Pan, Y. H. F. Su, G. R. Lin, W. S. Hwang, J. C. Kuo: Mater. Charact., 2018, vol. 141, 318-27.Google Scholar
  24. 24.
    Z. Zhang, R. A. Farrar: Mater. Sci. Technol., 1996, vol. 12, pp. 237-60.Google Scholar
  25. 25.
    W. Z. Mu, H. H. Mao, P. G. Jönsson, K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 311-19.Google Scholar
  26. 26.
    B. Wen, B. Song, N. Pan, Q. Y. Hu, J. H. Mao: Ironmaking Steelmaking, 2011, vol. 38, pp. 577-83.Google Scholar
  27. 27.
    S. H. Zhang, N. Hattori, M. Enomoto, T. Tarui: ISIJ Int., 1996, vol. 36, pp. 1301-09.Google Scholar
  28. 28.
    B. L. Bramfitt: Metall. Mater. Trans. B, 1970, vol. 1, pp. 1987-95.Google Scholar
  29. 29.
    M. Militzer, R. Pandi, E. B. Hawbolt: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1547-56.Google Scholar
  30. 30.
    C. J. Shang, L. J. Hu, S. W. Yang, X. M. Wang, Y. T. Zhao, X. L. He: Acta Metall. Sin., 2005, vol. 41, pp. 471-76.Google Scholar
  31. 31.
    G. Thewlis, J. A. Whiteman, D. J. Senogles: Mater. Sci. Technol., 1997, vol. 13, pp. 257-74.Google Scholar
  32. 32.
    Y. C. Liu, D. J. Wang, F. Sommer, E. J. Mittemeijer: Acta Mater., 2008, vol. 56, pp. 3833-42.Google Scholar
  33. 33.
    Y. J. Kang, S. H. Jeong, J. H. Kang, C. H. Lee: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2842-54.Google Scholar
  34. 34.
    W. Z. Mu, P. Hedström, H. Shibata, P. G. Jönsson, K. Nakajima: JOM, 2018, vol. 70, pp. 2283-95.Google Scholar
  35. 35.
    W. Z. Mu, N. Dogan, K. S. Coley: JOM, 2018, vol. 70, pp. 1199-09.Google Scholar
  36. 36.
    T. Hanamura, H. Shibata, Y. Waseda, H. Nakajima, S. Torizuka, T. Takanashi, K. Nagai: ISIJ Int., 1999, vol. 39, pp. 1188-93.Google Scholar
  37. 37.
    D. Zhang, H. Terasaki, Y. Komizo: Acta Mater., 2010, vol. 58, pp. 1369-78.Google Scholar
  38. 38.
    W. Z. Mu, H. Shibata, P. Hedström, P. G. Jönsson, K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 10-14.Google Scholar
  39. 39.
    X. D. Zou, J. C. Sun, H. Matsuura, C. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2168-73.Google Scholar
  40. 40.
    M. Wakoh, T. Sawai, S. Mizoguchi: Tetsu-to-Hagané, 1996, vol. 82, pp. 593-98.Google Scholar
  41. 41.
    X. L. Wan, K. M. Wu, G. Huang, R. Wei, L. Cheng: Int. J. Min. Met. Mater., 2014, vol. 21, pp. 878-85.Google Scholar
  42. 42.
    D. Zhang, Y. Shintaku, S. Suzuki, Y. Komizo: Metall. Mater. Trans. A, 2012, vol. 43, pp. 447-58.Google Scholar
  43. 43.
    I. deS. Bott, P. R. Rios: Scripta Mater., 1998, vol. 38, pp. 1269-74.Google Scholar
  44. 44.
    J. S. Liu, J. Yanagimoto: ISIJ Int., 2007, vol. 47, pp. 1188-94.Google Scholar
  45. 45.
    J. S. Byun, J. H. Shim, Y. W. Cho, D. N. Lee: Acta Mater., 2003, vol. 51, pp. 1593-06.Google Scholar
  46. 46.
    H. K. D. H. Bhadeshia, J. W. Christian: Metall. Mater. Trans. A, 1990, vol. 21, pp. 767-97.Google Scholar
  47. 47.
    L. Cheng, K. M. Wu: Acta Mater., 2009, vol. 57, pp. 3754-62.Google Scholar
  48. 48.
    M. M. Hosseinioun, G. Moeini: Mater. Test., 2016, vol. 58, pp. 848-59.Google Scholar
  49. 49.
    K. M. Wu, Y. Inagawa, M. Enomoto: Mater. Charact., 2004, vol. 52, pp. 121-27.Google Scholar
  50. 50.
    C. K. Lin, Y. C. Pan, W. S. Hwang, Y. C. Fang, Y. H. Su, G. R. Lin, Y. F. Wu: Ironmaking Steelmaking, 2019, vol. 46, pp. 176-83.Google Scholar
  51. 51.
    N. Kikuchi, S. Nabeshima, T. Yamashita, Y. Kishimoto, S. Sridhar, T. Nagasaka: ISIJ Int., 2011, vol. 51, pp. 2019-28 .Google Scholar
  52. 52.
    S. S. Babu: Curr. Opin. Solid. St. M., 2004, vol. 8, pp. 267-78.Google Scholar
  53. 53.
    H. H. Jin, J. H. Shim, Y. W. Cho, H. C. Lee: ISIJ Int., 2003, vol. 43, pp. 1111-13.Google Scholar
  54. 54.
    Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto: ISIJ Int., 1994, vol. 34, pp. 829-35Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yongkun Yang
    • 1
  • Dongping Zhan
    • 1
    Email author
  • Hong Lei
    • 1
  • Guoxing Qiu
    • 2
  • Yulu Li
    • 2
  • Zhouhua Jiang
    • 1
  • Huishu Zhang
    • 3
  1. 1.School of MetallurgyNortheastern UniversityShenyangP.R. China
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangP.R. China
  3. 3.Metallurgical Engineering CollegeLiaoning Institute of Science and TechnologyBenxiP.R. China

Personalised recommendations