Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2523–2535 | Cite as

Experimental and Numerical Study of Coating Thickness Using Multi-slot Air Knives

  • A. Yahyaee SoufianiEmail author
  • J. R. McDermid
  • A. N. Hrymak
  • F. E. Goodwin
Article
  • 90 Downloads

Abstract

Gas-jet wiping is a widely employed production technology for controlling the final zinc coating thickness on a moving substrate during continuous hot-dip galvanizing. This paper presents an experimental investigation and numerical analysis of a prototype multi-slot air knife, which offers an increase in wiping efficiency relative to the traditional single-slot jet geometry in the continuous galvanizing process. The applicability of the analytical coating weight model of Elsaadawy et al. (Metall Mater Trans B, 38:413-424, 2007) to predict the final coating weight was determined for the multi-slot geometry, where particular focus was devoted to the effect of geometric parameters. Experimental measurements under a variety of knife geometry and process conditions agreed with the coating weight predictions of the analytical model. It was also shown that the air-knife geometric parameters had a significant effect on the pressure profile and shear stress distribution applied by the air knives to the moving substrate. It was determined that the final coating thickness was significantly affected by the auxiliary jet width, Da, where lighter coating weights at higher strip velocities (up to 5.4 pct at Vs = 1.5 m/s) could be achieved by using the multi-slot air-knives prototype vs. the conventional single-slot configuration.

List of Symbols

c

Speed of sound (m/s)

R

Universal gas constant (J/mol K)

D

Main jet width (m)

Re

Jet Reynolds number \( \left( {\text{Re} = \frac{\rho uD}{\mu }} \right) \)

Da

Auxiliary jet width (m)

S

Non-dimensional shear stress

g

Gravitational acceleration (m/s2)

s

Auxiliary jet offset distance (m)

G

Non-dimensional pressure gradient

T

Temperature (K)

hf

Final film thickness (m)

U

Fluid velocity (m/s)

h

Local film thickness (m)

Vs

Strip velocity (m/s)

H

Non-dimensional film thickness

Z

Main jet exit-to-wall distance (m)

L

Computational domain length (m)

μ

Fluid dynamic viscosity (kg/m s)

Ls

Strip width (m)

μt

Turbulent viscosity (kg/m s)

\( \dot{m} \)

Mass flow rate of removed oil (kg/s)

ρcl

Coating liquid density (kg/m3)

P

Static pressure (Pa)

γ

Ratio of specific heats of air

Ps

Nozzle static pressure (Pa)

τ

Shear stress (Pa)

P

Ambient pressure (Pa)

ρ

Density of gas (kg/m3)

q

Withdrawal flux (m2/s)

ρcl

Density of coating liquid (kg/m3)

Q

Non-dimensional withdrawal flux

Notes

Acknowledgments

The authors gratefully acknowledge the financial contributions of the International Zinc Association Galvanized Autobody Partnership (IZA-GAP) Members and the Natural Sciences and Engineering Research Council of Canada (NSERC, Grant CRDPJ 446105-2012) to the success of this research.

References

  1. 1.
    Elsaadawy EA, Hanumanth GS, Balthazaar AKS, McDermid JR, Hrymak AN, Forbes JF (2007) Metall Mater Trans B 38:413–24CrossRefGoogle Scholar
  2. 2.
    2 A.R. Marder: Prog. Mater. Sci., 2000, vol. 45, pp. 191–271.CrossRefGoogle Scholar
  3. 3.
    3 J.A. Thornton and H.F. Graff: Metall. Trans. B, 1976, vol. 7, pp. 607–18.CrossRefGoogle Scholar
  4. 4.
    4 C.H. Ellen and C. V. Tu: J. Fluids Eng., 1983, vol. 106, pp. 399–404.CrossRefGoogle Scholar
  5. 5.
    M. Dubois: Galvatech 2011 Conf. Proc.: HDG Process Technol., Genova, 2011, pp. 1847–59.Google Scholar
  6. 6.
    6 E.O. Tuck: Phys. Fluids, 1983, vol. 26, pp. 2352–8.CrossRefGoogle Scholar
  7. 7.
    H. Yoneda: Master of Applied Science Thesis, University of Minnesota, USA, 1993.Google Scholar
  8. 8.
    8 C. V Tu and D.H. Wood: Exp. Therm. Fluid Sci., 1996, vol. 13, pp. 364–73.CrossRefGoogle Scholar
  9. 9.
    Tuck EO, Vanden Broeck J-M (1984) AIChE J 30:808–11CrossRefGoogle Scholar
  10. 10.
    Hrymak AN, Elsaadawy EA, Hanumanth G, McDermid JR, Goodwin FE (2005) AISTech Proc II:393–401Google Scholar
  11. 11.
    A. Gosset, P. Rambaud, L. Castellano, M. Dubois, and J.M. Buchlin: 6th Eur. Coat. Symp., Bradford, UK, 2005.Google Scholar
  12. 12.
    13 J.-R. Park: Ironnmaking Steelmak., 2001, vol. 28, pp. 53–7.CrossRefGoogle Scholar
  13. 13.
    14 D. Arthurs and S. Ziada: J. Can. Acoust. Assoc., 2007, vol. 35, pp. 28–9.Google Scholar
  14. 14.
    15 K. Myrillas, A. Gosset, P. Rambaud, M. Anderhuber, J.M. Mataigne, and J.M. Buchlin: Chem. Eng. Process. Process Intensif., 2011, vol. 50, pp. 466–70.CrossRefGoogle Scholar
  15. 15.
    G.Y. Kim, H.D. Park, D.E. Lee, and W.C. Chung: US 2010/0031879 A1: 2008.Google Scholar
  16. 16.
    P. Tamadonfar, J.R. McDermid, A.N. Hrymak, and F.E. Goodwin: AISTech—Iron Steel Technol. Conf. Proc., Pittsburgh, 2010, pp. 517–25.Google Scholar
  17. 17.
    P. Tamadonfar, J.R. McDermid, A.N. Hrymak, and F.E. Goodwin: 8th Int. Conf. Zinc Zinc Alloy Coat. Steel Sheet (GalvaTech 2011), Genova, Italy, 2011.Google Scholar
  18. 18.
    S. Alibeigi, J.R. McDermid, S. Ziada, and F.E. Goodwin: Galvatech 2013 9th Int. Conf. Zinc Zinc Alloy Coat. Steel Sheet 2nd Asia-Pac. Galvaniz. Conf., Beijing, 2013, pp. 437–40.Google Scholar
  19. 19.
    D. Finnerty, J. McDermid, F. Goodwin, and S. Ziada: Galvatech 2017 11th Int. Conf. Zinc Zinc Alloy Coat. Steel Sheet, Tokyo, 2017, pp. 307–13.Google Scholar
  20. 20.
    J.R. McDermid, D. Finnerty, S. Ziada, and F.E. Goodwin: 109th Meet. Galvaniz. Assoc., Troy, MI, 2017.Google Scholar
  21. 21.
    22 D. Arthurs and S. Ziada: J. Fluids Struct., 2012, vol. 34, pp. 236–58.CrossRefGoogle Scholar
  22. 22.
    Yahyaee Soufiani A, McDermid JR, Hrymak AN, Goodwin FE (2017) J Coat Technol Res 14:1015–28CrossRefGoogle Scholar
  23. 23.
    A. Ritcey, J.R. McDermid, and S. Ziada: ICFMFA 2015: 17th Int. Conf. Fluid Mech. Flow Anal., 2015.Google Scholar
  24. 24.
    S. Alibeigi: Master of Applied Science Thesis, McMaster University, Canada, 2013.Google Scholar
  25. 25.
    26 F. M.White: Fluid Mechanics, fourth ed., McGraw-Hill, Boston, 2003, 866.Google Scholar
  26. 26.
    27 H.W. Coleman and W.G. Steele: Experimentation and Uncertainity Analysis for Engineers, Second ed., John Wiley & Sons, Inc., New York, 1999, 271.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • A. Yahyaee Soufiani
    • 1
    Email author
  • J. R. McDermid
    • 1
  • A. N. Hrymak
    • 2
  • F. E. Goodwin
    • 3
  1. 1.McMaster UniversityHamiltonCanada
  2. 2.Western UniversityLondonCanada
  3. 3.International Zinc AssociationDurhamUSA

Personalised recommendations