Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2111–2120 | Cite as

Evolutions of the Micro- and Macrostructure and Tensile Property of Cu-15Ni-8Sn Alloy During Electromagnetic Stirring-Assisted Horizontal Continuous Casting

  • Zhe Shen
  • Bangfei Zhou
  • Jie Zhong
  • Yunbo ZhongEmail author
  • Tianxiang ZhengEmail author
  • Licheng Dong
  • Yong Zhai
  • Weili Ren
  • Zuosheng Lei
  • Zhongming Ren
Article
  • 58 Downloads

Abstract

The present study investigates the evolution of the micro- and macrostructure and tensile property of the Cu-15Ni-8Sn (weight percent) alloy prepared by horizontal continuous casting and electromagnetic stirring (EMS). The results show that the application of EMS is beneficial for grain refinement and for microstructure transformation from the dendrite to the rosette structure and that it leads to a significant improvement in the tensile property. The forced flow induced by EMS homogenizes the temperature field ahead of the solid-liquid interface, disturbing the heat flow direction and resulting in the columnar to equiaxed transition. The grain refinement under different electromagnetic stirring frequencies is mainly derived from the homogenization of the temperature and the remelting of dendritic arms. In addition, the evolution of the tensile property with and without EMS is discussed from the perspective of fracture mode and fine-grain strengthening.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China (Grant Nos. 2016YFB0301401 and 2016YFB0300401), the National Natural Science Foundation of China (Grant Nos. U1860202, U1732276, 50134010, and 51704193), and the Science and Technology Commission of Shanghai Municipality (Grant Nos. 13JC14025000 and 15520711000).

References

  1. 1.
    1.R.K. Ray and S.C. Narayanan: Metall. Trans. A, 1982, vol. 13A, pp. 565–73.CrossRefGoogle Scholar
  2. 2.
    2.J.C. Zhao and M.R. Notis: Acta Mater., 1998, vol. 46, pp. 4203–18.CrossRefGoogle Scholar
  3. 3.
    3.J.C. Rhu and S.S. Kim: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2649–57.CrossRefGoogle Scholar
  4. 4.
    4.B. Zhang, J. Cui, and G. Lu: Mater. Sci. Eng. A, 2003, vol. 355, pp. 325–30.CrossRefGoogle Scholar
  5. 5.
    5.J.P. Martins, A.L.M. Carvalho, and A.F. Padilha: J. Mater. Sci., 2009, vol. 44, pp. 2966–76.CrossRefGoogle Scholar
  6. 6.
    6.M.T. Clavaguera-Mora, C. Comas, J.L. Touron, M. García, O. Guixà, and N. Clavaguera: J. Mater. Sci., 1999, vol. 34, pp. 4347–50.CrossRefGoogle Scholar
  7. 7.
    7.X. Li, Z. Guo, X. Zhao, W. Bi, F. Chen, and T. Li: Mater. Sci. Eng. A, 2007, vol. 460, pp. 648–51.CrossRefGoogle Scholar
  8. 8.
    8.A.A. Tzavaras and H.D. Brody: JOM, 1984, vol. 36, pp. 31–37.CrossRefGoogle Scholar
  9. 9.
    9.L. Deyong, R. Tremblay, and R. Angers: Mater. Sci. Eng. A, 1990, vol. 124, pp. 223–31.CrossRefGoogle Scholar
  10. 10.
    10.Q. Dong, J. Zhang, B. Wang, and X. Zhao: J. Mater. Process. Technol., 2016, vol. 238, pp. 81–88.CrossRefGoogle Scholar
  11. 11.
    11.G. Reinhart, N. Mangelinck-Noël, H. Nguyen-Thi, T. Schenk, J. Gastaldi, B. Billia, P. Pino, J. Härtwig, and J. Baruchel: Mater. Sci. Eng. A, 2005, vol. 413, pp. 384–88.CrossRefGoogle Scholar
  12. 12.
    12.S. Eckert, B. Willers, P.A. Nikrityuk, K. Eckert, U. Michel, and G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 413, pp. 211–16.CrossRefGoogle Scholar
  13. 13.
    13.W. Jin, F. Bai, T. Li, and G. Yin: Mater. Lett., 2008, vol. 62, pp. 1585–88.CrossRefGoogle Scholar
  14. 14.
    14.V. Metan, K. Eigenfeld, D. Räbiger, M. Leonhardt, and S. Eckert: J. Alloys Compd., 2009, vol. 487, pp. 163–72.CrossRefGoogle Scholar
  15. 15.
    15.B. Willers, S. Eckert, U. Michel, I. Haase, and G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 402, pp. 55–65.CrossRefGoogle Scholar
  16. 16.
    16.T. Campanella, C. Charbon, and M. Rappaz: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3201–10.CrossRefGoogle Scholar
  17. 17.
    17.A. Das, S. Ji, and Z. Fan: Acta Mater., 2002, vol. 50, pp. 4571–85.CrossRefGoogle Scholar
  18. 18.
    18.E.O. Hall: Proc. Phys. Soc., 1951, vol. 64, pp. 747–53.CrossRefGoogle Scholar
  19. 19.
    19.N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.Google Scholar
  20. 20.
    20.H. Kato: Mater. Sci. Eng. A, 2015, vol. 639, pp. 540–49.CrossRefGoogle Scholar
  21. 21.
    21.M. Li, T. Tamura, N. Omura, and K. Miwa: J. Alloys Compd., 2010, vol. 494, pp. 116–22.CrossRefGoogle Scholar
  22. 22.
    22.H. Zhang, Y.Z. He, X.M. Yuan, and P. Ye: Appl. Surf. Sci., 2010, vol. 256, pp. 5837–42.CrossRefGoogle Scholar
  23. 23.
    23.J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.CrossRefGoogle Scholar
  24. 24.
    24.A. Hellawell, S. Liu, and S.Z. Lu: JOM, 1997, vol. 49, pp. 18–20.CrossRefGoogle Scholar
  25. 25.
    25.R.H. Mathiesen, L. Arnberg, P. Bleuet, and A. Somogyi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2515–24.CrossRefGoogle Scholar
  26. 26.
    26.X. Li, A. Gagnoud, Y. Fautrelle, Z.M. Ren, R. Moreau, Y.D. Zhang, and C. Esling: Acta Mater., 2012, vol. 60, pp. 3321–32.CrossRefGoogle Scholar
  27. 27.
    27.D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 4287–92.CrossRefGoogle Scholar
  28. 28.
    28.E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, and R.H. Mathiesen: Acta Mater., 2014, vol. 70, pp. 228–39.CrossRefGoogle Scholar
  29. 29.
    29.P.P. Sahoo, A. Kumar, J. Halder, and M. Raj: ISIJ Int., 2009, vol. 49, pp. 521–28.CrossRefGoogle Scholar
  30. 30.
    30.H.K. Moffatt: Phys. Fluids, 1991, vol. 3, pp. 1336–43.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Zhe Shen
    • 1
  • Bangfei Zhou
    • 1
  • Jie Zhong
    • 1
  • Yunbo Zhong
    • 1
    Email author
  • Tianxiang Zheng
    • 1
    Email author
  • Licheng Dong
    • 1
  • Yong Zhai
    • 1
  • Weili Ren
    • 1
  • Zuosheng Lei
    • 1
  • Zhongming Ren
    • 1
  1. 1.State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations