Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2251–2258 | Cite as

A Study on the Interfacial Reaction Between Liquid Iron and MgO-Based Refractories Containing TiO2

  • Junmo Jeon
  • Sookyung Kim
  • Minseuk Kim
  • Hyunsik ParkEmail author
Article
  • 107 Downloads

Abstract

The interfacial reactions between liquid iron and MgO-based refractories were investigated based on the TiO2 concentration values. Substrates comprising MgO, MgO-TiO2 (MT), MgO-Al2O3 (MA), and MgO-Al2O3, at loadings of 3, 6, 9, 12, and 15 wt pct TiO2 (MAT3-15), were reacted with liquid iron at 1823 K by using the sessile drop technique. Microscopic analysis by SEM/EDX and the associated thermochemical calculations by Factsage 7.0™ confirmed the reaction mechanisms of different refractory materials. MgO and MT showed higher resistance against liquid iron penetration compared with MA and MAT3-15, which was attributed to the formation of a magnesiowustite (MO (M = Fe, Mg)) layer formed at the interfaces. Increasing the levels of TiO2 up to 6 wt pct contributed to the denser microstructure of MA. However, the contact angle was lowest for 9 wt pct of TiO2 and then gradually increased up to 15 wt pct. Chemical reactions generating a liquid slag phase contributed to the fluctuations in contact angle with respect to TiO2.

Notes

Acknowledgments

The research was supported by the Basic Research Project (GP2017-025) of the Korea Institute of Geoscience and Mineral Resources (KIGAM), funded by the Ministry of Science, ICT, and Future Planning of Korea.

References

  1. 1.
    A.W. Cramb: in: Impurities in Engineered Materials: Impact, Reliability and Control, J.W.C.L. Briant, ed., Marcel-Dekker, New York, 1999.Google Scholar
  2. 2.
    P.R. Scheller and Q. Shu: Steel Res. Int., 2014, vol. 85, pp. 1310–6.CrossRefGoogle Scholar
  3. 3.
    W.A. Calvo, P. Pena, and A.G. Tomba-Martinez: Ceram. Int., 2019, vol. 45, pp. 185–96.CrossRefGoogle Scholar
  4. 4.
    W.E. Lee and S. Zhang: Int. Mater. Rev., 1999, vol. 44, pp. 77–104.CrossRefGoogle Scholar
  5. 5.
    H. Um, K. Lee, J. Choi, and Y. Chung: ISIJ Int., 2012, vol. 52, pp. 62–7.CrossRefGoogle Scholar
  6. 6.
    J. Jeon, Y. Kang, J.H. Park, and Y. Chung: Ceram. Int., 2017, vol. 43, pp. 15074–9.CrossRefGoogle Scholar
  7. 7.
    H.S. Park, Y. Kim, S. Kim, T. Yoon, Y. Kim, and Y. Chung: Ceram. Int., 2018, vol. 44, pp. 17585–91.CrossRefGoogle Scholar
  8. 8.
    J. Park, J. Jeon, K. Lee, J.H. Park, and Y. Chung: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2016, vol. 47, pp. 1832–38.Google Scholar
  9. 9.
    L. Krietz, in Refractories Handbook, C.A. Schanht, ed., Marcel Dekker, New York, 2004.Google Scholar
  10. 10.
    H. Wang, R. Caballero, and D. Sichen: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 789–97.CrossRefGoogle Scholar
  11. 11.
    D. Schmidtmeier, G. Büchel, and A. Buhr: Ceram. Mater., 2009, vol. 61, pp. 223–7Google Scholar
  12. 12.
    M. Guo, P.T. Jones, S. Parada, E. Boydens, J. V. Dyck, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 3831–43.CrossRefGoogle Scholar
  13. 13.
    S. Zhang, N.J. Marriott, and W.E. Lee: J. Eur. Ceram. Soc., 2001, vol. 21, pp. 1037–47.CrossRefGoogle Scholar
  14. 14.
    S.H. Heo, K. Lee, and Y. Chung: Trans. Nonferrous Met. Soc. China (English Ed., 2012, vol. 22, pp. 870–75.Google Scholar
  15. 15.
    Z. Liu, J. Yu, X. Yang, E. Jin, and L. Yuan: Materials (Basel).  https://doi.org/10.3390/ma11060883.
  16. 16.
    A. Mittal, G.J. Albertsson, G.S. Gupta, S. Seetharaman, and S. Subramanian: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2014, vol. 45, pp. 338–44.Google Scholar
  17. 17.
    H. Um, K. Lee, K.-Y. Kim, G. Shin, and Y. Chung: Ironmak. Steelmak., 2014, vol. 41, pp. 31–7.CrossRefGoogle Scholar
  18. 18.
    M.K. Cho, G.G. Hong, and S.K. Lee: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 1783–90.CrossRefGoogle Scholar
  19. 19.
    J.S. Park, D.H. Kim, and J.H. Park: J. Am. Ceram. Soc., 2015, vol. 98, pp. 1974–81.CrossRefGoogle Scholar
  20. 20.
    S. Yilmaz: Ironmak. Steelmak., 2006, vol. 33, pp. 151–6.CrossRefGoogle Scholar
  21. 21.
    E.Y. Sako, M.A.L. Braulio, A.P. Luz, E. Zinngrebe, and V.C. Pandolfelli: J. Am. Ceram. Soc., 2013, vol. 96, pp. 3252–7.Google Scholar
  22. 22.
    K.C. Mills, Y. Su, A.B. Fox, Z. Li, R.P. Thackray, and H.T. Tsai: ISIJ Int., 2005, vol. 45, pp. 619–33.CrossRefGoogle Scholar
  23. 23.
    J.H. Zietsman and P.C. Pistorius: Miner. Eng., 2006, vol. 19, pp. 262–79.CrossRefGoogle Scholar
  24. 24.
    P.C. Pistorius: J. South African Inst. Min. Metall., 2003, vol. 103, pp. 509–14Google Scholar
  25. 25.
    P.C. Pistorius and C. Coetzee: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2003, vol. 34, pp. 581–88.Google Scholar
  26. 26.
    Y. Morizane, B. Ozturk, and R.J. Fruehan: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 1999, vol. 30, pp. 29–43.Google Scholar
  27. 27.
    H. Park, J.Y. Park, G.H. Kim, I. Sohn: Steel Res. Int., 2012, vol. 83, pp. 150–6.CrossRefGoogle Scholar
  28. 28.
    S.-J. Nam, Y.-B. Kang, S.-M. Jung, and Y. Sasaki: ISIJ Int., 2013, vol. 53, pp. 1779–85.CrossRefGoogle Scholar
  29. 29.
    R. Sarkar and G. Bannerjee: J. Eur. Ceram. Soc., 2000, vol. 20. pp. 2133–41.CrossRefGoogle Scholar
  30. 30.
    S. Maitra, S. Das, and A. Sen: Ceram. Int., 2007, vol. 33, pp. 239–43.CrossRefGoogle Scholar
  31. 31.
    M.A.L. Brauliow and V.C. Pandolfelli: J. Am. Ceram. Soc., 2010, vol. 93, pp. 2981–5.CrossRefGoogle Scholar
  32. 32.
    S.H. Badiee and S. Otroj: Ceram. - Silikaty, 2011, vol. 55, pp. 319–325.Google Scholar
  33. 33.
    W.J. Yuan, C.J. Deng, and H.X. Zhu: Mater. Chem. Phys., 2015, vol. 162, pp. 724–33.CrossRefGoogle Scholar
  34. 34.
    www.factsage.com, version 7.2. Accessed April 2019.
  35. 35.
    W.S. Rasband: ImageJ, US National Institutes of Health, Bethesda, MD, 1997–2018, https://imagej.nih.gov/ij/.
  36. 36.
    V. Stahleisen and V.D. Eisenhüttenleute: Slag Atlas, Verlag Stahleisen, Dusseldorf, 1995.Google Scholar
  37. 37.
    C. Xuan, H. Shibata, S. Sukenaga, P. G. Jönsson, K. Nakajima: ISIJ Int., 2015, vol. 55, pp. 1882-90.CrossRefGoogle Scholar
  38. 38.
    C. Xuan, A. Karasev, H. Shibata, and P.G. Jönsson: ISIJ Int., 2016, vol. 56, pp. 765–69.Google Scholar
  39. 39.
    N. Eustatahopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Pergamon, Oxford, 1999.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Junmo Jeon
    • 1
  • Sookyung Kim
    • 1
  • Minseuk Kim
    • 1
  • Hyunsik Park
    • 1
    Email author
  1. 1.Resource Recovery Research Center, Mineral Resources Research DivisionKorea Institute of Geoscience and Mineral Resources (KIGAM)DaejeonKorea

Personalised recommendations