Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2319–2333 | Cite as

Numerical Simulation and Experimental Validation of Nondendritic Structure Formation in Magnesium Alloy Under Oscillation and Ultrasonic Vibration

  • Anshan Yu
  • Xiangjie YangEmail author
  • HongMin Guo
  • Kun Yu
  • Xiuyuan Sun
  • Zixin Li
Article
  • 242 Downloads

Abstract

In this study, the formation of nondendritic structures in the primary phase of magnesium alloy solidified under oscillation and ultrasonic vibration was investigated by numerical simulation and experimentally. The growth and motion of a dendrite during solidification was simulated by a combination of the lattice Boltzmann method and the phase-field method. The simulation and experimental results indicated that higher oscillation amplitudes and acoustic streaming made the microstructures change from dendritic to nondendritic in the α-Mg primary phases. A sufficient shear stress and an appropriate flow time in the barrel should be satisfied when a given inclined angle is selected. The effects of the flow and the thermal field on the nucleation behavior, the constitutional undercooling, and the growth morphology are also discussed. It was found that a high shear rate and high turbulence can help homogenize the temperature and the concentration fields and collide and rotate the α-Mg primary phases.

Notes

Acknowledgments

This research was supported by a Grant from the National Natural Science Foundation of China (No. 51674144), the Luodi Research Plan of Jiangxi Educational Department (No, KJLD14016), the Nature Science Foundation of Jiangxi Province (Nos. 20122BAB206021, 20133ACB21003), and the Jiangxi Province Young Scientists Cultivating Programs (No. 20122BCB23001).

References

  1. 1.
    D.B. Spencer, R. Mehrabian, and M.C. Flemings: Mater. Trans. A, 1972, vol. 3, pp. 1925-32.CrossRefGoogle Scholar
  2. 2.
    R. Rojas, T. Takaki, and M. Ohno: J. Comput. Phys., 2015, vol. 298, pp. 29-40.CrossRefGoogle Scholar
  3. 3.
    L. Liu, S. Pian, Z. Zhang, Y. Bao, R. Li, and H. Chen: Comput. Mater. Sci., 2018, vol. 146, pp. 9-17.CrossRefGoogle Scholar
  4. 4.
    G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, J. Baruchel, and B. Billia: JOM., 2014, vol. 66, pp. 1408-14.CrossRefGoogle Scholar
  5. 5.
    H. Yasuda, T. Nagira, M. Yoshiya, M. Uesugi, N. Nakatsuka, M. Kiire, A. Sugiyama, K. Uesugi, and K. Umetani: In IOP Conf: Mater. Sci. Eng., 2012, vol. 27, pp. 012084.Google Scholar
  6. 6.
    N. Shevchenko, S. Boden, G. Gerbeth, and S. Eckert: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3797-3808.CrossRefGoogle Scholar
  7. 7.
    S. Eckert, P.A. Nikrityuk, B. Willers, D. Räbiger, N. Shevchenko, H. Neumann-Heyme, V. Travnikov, S. Odenbach, A. Voigt, and K. Eckert: Eur. Phys. J. Spec. Top., 2013, vol. 220, pp. 123-37.CrossRefGoogle Scholar
  8. 8.
    G. Lesoult: Mater. Sci. Eng. A, 2005, vol. 413, pp. 19-29.CrossRefGoogle Scholar
  9. 9.
    A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, and J. Baruchel: Acta Mater., 2013, vol. 61, pp. 1303-15.CrossRefGoogle Scholar
  10. 10.
    A.A. Buffet, G. Reinhart, T. Schenk, H. Nguyen-Thi, J. Gastaldi, N. Mangelinck-Noël, H. Jung, J. Härtwig, J. Baruchel, and B. Billia: Phys. Status Solidi A, 2007, vol. 204, pp. 2721-7.CrossRefGoogle Scholar
  11. 11.
    W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma: Ann. Rev. Mater. Res., 2002, vol. 32, pp. 163-94.CrossRefGoogle Scholar
  12. 12.
    M. Zhu, D. Sun, S. Pan, Q. Zhang, and D. Raabe: Modell. Simul. Mater. Sci. Eng., 2014, vol. 22, pp. 034006.CrossRefGoogle Scholar
  13. 13.
    V.R. Voller: Appl. Math. Model., 1987, vol. 11, pp. 110-6.CrossRefGoogle Scholar
  14. 14.
    L. Tan and N. Zabaras: J. Comput. Phys., 2006, vol. 211, pp. 36-63.CrossRefGoogle Scholar
  15. 15.
    S. Karagadde, A. Bhattacharya, G. Tomar, and P. Dutta: J. Comput. Phys., 2012, vol. 231, pp. 3987-4000.CrossRefGoogle Scholar
  16. 16.
    B. Jelinek, M. Eshraghi, S. Felicelli, and J.F. Peters: Comput. Phys. Commun., 2014, vol. 185, pp. 939-47.CrossRefGoogle Scholar
  17. 17.
    X. Zhang, J. Kang, Z. Guo, S. Xiong, and Q. Han: Comput. Phys. Commun., 2018, vol. 223, pp. 18-27.CrossRefGoogle Scholar
  18. 18.
    D. Medvedev, F. Varnik, and I. Steinbach: Procedia Comput. Sci., 2013, vol. 18, pp. 2512-20.CrossRefGoogle Scholar
  19. 19.
    T. Takaki, R. Sato, R. Rojas, M. Ohno, and Y. Shibuta: Comput. Mater. Sci., 2018, vol. 147, pp. 124-31.CrossRefGoogle Scholar
  20. 20.
    X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, and T.Z. Gong: Sci. Rep., 2017, vol. 7, pp. 45770.CrossRefGoogle Scholar
  21. 21.
    H.M. Guo, X.J.Yang, and X.Q. Luo: J. Alloys Compd., 2009, vol. 482, pp. 412-5.CrossRefGoogle Scholar
  22. 22.
    A. Karma: Phys Rev Lett., 2001, vol. 87, pp. 115701.CrossRefGoogle Scholar
  23. 23.
    B. Echebarria, R. Folch, A. Karma, and M. Plapp: Phys. Rev. E., 2004, vol. 70, pp. 061604.CrossRefGoogle Scholar
  24. 24.
    C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, and X. Tong: J. Comput. Phys., 1999, vol. 154, pp. 468-96.CrossRefGoogle Scholar
  25. 25.
    R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, and J. Periaux: J. Comput. Phys., 2001, vol. 169, pp. 363-426.CrossRefGoogle Scholar
  26. 26.
    Z.G. Feng and E.E. Michaelides: J. Comput. Phys., 2004, vol. 195, pp. 602-28.CrossRefGoogle Scholar
  27. 27.
    GB Mi, LJ He, PJ Li, PS Popel, and IS Abaturov: Chin. J. Nonferrous Met., 2009, 19, 1372-8.Google Scholar
  28. 28.
    M.W. Wu and S.M. Xiong: Chin. J. Nonferrous Met., 2012, vol. 22, pp. 2212-19.CrossRefGoogle Scholar
  29. 29.
    X. Feng, F. Zhao, H. Jia, Y. Li, and Y. Yang: Ultrason Sonochem., 2018, vol. 40, pp. 113-19.CrossRefGoogle Scholar
  30. 30.
    B. Billia, N. Bergeon, H.N. Thi, H. Jamgotchian, J. Gastaldi, and G. Grange: Phys. Rev. Lett., 2004, vol. 93, pp. 126105.CrossRefGoogle Scholar
  31. 31.
    G. Reinhart, A. Buffet, H. Nguyen-Thi, B. Billia, H. Jung, N. Mangelinck-Noel, N. Bergeon, T. Schenk, J. Härtwig, and J. Baruchel: Metall. Mater. Trans. A, 2008, vol. 39, pp. 865-74.CrossRefGoogle Scholar
  32. 32.
    J. Pilling and A. Hellawell: Metall. Mater. Trans. A, 1996, vol. 27, pp. 229-32.CrossRefGoogle Scholar
  33. 33.
    N. Saklakoğlu, S. Gencalp, Ş. Kasman, and İ.E. Saklakoğlu: Adv. Mater. Res. 2011, vol. 264, pp. 272-77.CrossRefGoogle Scholar
  34. 34.
    S. Ji and Z. Fan: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3511-20.CrossRefGoogle Scholar
  35. 35.
    X.G. Hu, Q. Zhu, S.P. Midson, H.V. Atkinson, H.B. Dong, F. Zhang, and Y.L. Kang: Acta Mater., 2017, 124, 446-55.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Anshan Yu
    • 1
    • 2
  • Xiangjie Yang
    • 1
    • 2
    Email author
  • HongMin Guo
    • 2
    • 3
  • Kun Yu
    • 1
    • 2
  • Xiuyuan Sun
    • 1
    • 2
  • Zixin Li
    • 1
    • 2
  1. 1.School of Mechanical and Electrical EngineeringNanchang UniversityNanchangP.R. China
  2. 2.Key Laboratory of Near Net Forming in Jiangxi ProvinceNanchangP.R. China
  3. 3.Department of Materials Science and EngineeringNanchang UniversityNanchangP.R. China

Personalised recommendations