Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2304–2318 | Cite as

Structure and Reactivity of Low-Rank Coal Chars Prepared from Fluidized Bed and Moving Bed Pyrolyzers and the Potential for Using Them in Pulverized Coal Injection (PCI)

  • Chong Zou
  • Jiangyong He
  • Junxue ZhaoEmail author
  • Xiaoming LiEmail author
  • Ruimeng Shi
  • Cheng Ma
  • Yi Kang
  • Xiaorui Zhang
Article
  • 65 Downloads

Abstract

Utilizing pyrolysis chars as the injection fuel in a blast furnace can reduce the dependence on high-quality pulverized coal injection (PCI) coal. In this study, the physical properties and reaction characteristics of chars prepared from two different industrial-scale pyrolyzers (fluidized bed and moving bed) are investigated. The results reveal remarkable component segregation in the char particles with different particle sizes. The properties of large-size char particles are found to better satisfy the PCI fuel requirement in a blast furnace. Compared with PCI coal, the char particles exhibit a rough surface, well-developed pore structure, and less-ordered chemical structure of carbon. Results from isothermal combustion, isothermal gasification, and drop tube furnace experiments show that both types of chars exhibit a better reactivity than PCI coal. The excellent reactivity of chars is closely related to its high Brunauer–Emmett–Teller surface area and relatively poor chemical ordering during conversion. Based on these characteristics, both fluidized bed char (FBC) and moving bed char (MBC) have a great potential to be used as PCI fuels. The application method of chars for PCI in a blast furnace is proposed finally.

Notes

Acknowledgments

The authors thank the Natural Science Foundation Project of China (Nos. 51704224 and 51574189), and the Natural Science Foundation Research Project, Shaanxi, China (No. 2017TSCXL-GY-04-01 and 2015Ktzdsf01-04) for funding this research.

References

  1. 1.
    M. Otero, X. Gomez, A.I. Garcia, A. Moran: Chemosphere, 2007, vol.69, pp. 1740-1750.CrossRefGoogle Scholar
  2. 2.
    T.A.M. Asanuma, M. Sato, R. Murai, T. Nonaka, I. Okochi, H. Tsukiji, K. Nemoto: ISIJ Int, 2000, vol.40, pp. 244-251.CrossRefGoogle Scholar
  3. 3.
    S. Melendi, M.A. Diez, R. Alvarez, C. Barriocanal: Fuel Processing Technology, 2011, vol.92, pp. 471-478.CrossRefGoogle Scholar
  4. 4.
    W.S. A. Ziebik: Energy, 2001, vol.26, pp. 1159-1173.CrossRefGoogle Scholar
  5. 5.
    C. Wang, P. Mellin, J. Lövgren, L. Nilsson, W. Yang, H. Salman, A. Hultgren, M. Larsson: Energy Convers. Manag., 2015, vol.102, pp. 217-226.CrossRefGoogle Scholar
  6. 6.
    F. Nie, T. Meng, Q. Zhang: in Pyrolysis, M. Samer, ed., IntechOpen, Rijeka, 2017.Google Scholar
  7. 7.
    D. Pan, X. Qu, J. Bi: Journal of Analytical and Applied Pyrolysis, 2017, vol.127, pp. 461-467.CrossRefGoogle Scholar
  8. 8.
    W. Duan, Q. Yu, H. Xie, Q. Qin: Energy, 2017, vol.135, pp. 317-326.CrossRefGoogle Scholar
  9. 9.
    A. De Girolamo, N.K. Lameu, L. Zhang, Y. Ninomiya: Fuel Processing Technology, 2017, vol.156, pp. 113-123.CrossRefGoogle Scholar
  10. 10.
    A. De Girolamo, A. Grufas, I. Lyamin, I. Nishio, Y. Ninomiya, L. Zhang: Energy & Fuels, 2016, vol.30, pp. 1858-1868.CrossRefGoogle Scholar
  11. 11.
    C. Zou, J. Zhao, X. Li, R. Shi: Journal of Thermal Analysis and Calorimetry, 2016, vol.126, pp. 1469-1480.CrossRefGoogle Scholar
  12. 12.
    J. Liao, A.B. Yu, Y. Shen: Powder Technology, 2017, vol.314, pp. 550-56.CrossRefGoogle Scholar
  13. 13.
    J. Hu, Y. Chen, K. Qian, Z. Yang, H. Yang, Y. Li, H. Chen: Fuel Processing Technology, 2017, vol.159, pp. 178-186.CrossRefGoogle Scholar
  14. 14.
    N. Howaniec: Fuel, 2016, vol.172, pp. 118-123.CrossRefGoogle Scholar
  15. 15.
    W. Zhu, W. Song, W. Lin: Energy Fuels, 2008, vol.22, pp. 2482-2487.CrossRefGoogle Scholar
  16. 16.
    B. Tian, Y.Y. Qiao, Y.Y. Tian, Q. Liu: J. Anal. Appl. Pyrolysis, 2016, vol.121, pp. 376-386.CrossRefGoogle Scholar
  17. 17.
    P.B. Weisz, R.D. Goodwin: J. Catal., 1963, vol.2, pp. 397-404.CrossRefGoogle Scholar
  18. 18.
    L. Lu, V. Sahajwalla, C. Kong, A. Mclean: ISIJ Int., 2002, vol.42, pp. 816-825.CrossRefGoogle Scholar
  19. 19.
    H. Lorenz, E. Carrea, M. Tamura, J. Haas: Fuel 2000, vol.79, pp. 1161-1172.CrossRefGoogle Scholar
  20. 20.
    Y. Chen, S. Mori, W.P. Pan: J.Thermochimica Acta, 1996, vol.275, pp. 149-158.CrossRefGoogle Scholar
  21. 21.
    Y. Wang, Y. Song, H. Zhou, K. Zhi, Y. Teng, R. He, R. Tian, Q. Liu: Environmental Progress & Sustainable Energy, 2017, vol.36, pp. 766-774.CrossRefGoogle Scholar
  22. 22.
    L Lu, C. Kong, V Sahajwallab and D Harrisc: Fuel, 2002, vol.81, pp. 1215-1225.CrossRefGoogle Scholar
  23. 23.
    B. Wang, L. Sun, S. Su, J. Xiang, S. Hu, H. Fei: Energy & Fuels, 2012, vol.26, pp. 1565-1574.CrossRefGoogle Scholar
  24. 24.
    C. Sheng: Fuel, 2007, vol.86, pp. 2316-2324.CrossRefGoogle Scholar
  25. 25.
    H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, Y. Sato: Fuel, 2004, vol.83, pp. 2427-2433.CrossRefGoogle Scholar
  26. 26.
    L. Lu, V. Sahajwalla, D. Harris: Energy Fuels, 2000, vol.14, pp. 869-876.CrossRefGoogle Scholar
  27. 27.
    R.-G. Kim, C.-H. Jeon: Applied Thermal Engineering, 2014, vol.63, pp. 565-576.CrossRefGoogle Scholar
  28. 28.
    J. Deng, K. Wang, Y. Zhang, H. Yang: Journal of Thermal Analysis and Calorimetry, 2014, vol.118, pp. 417-423.CrossRefGoogle Scholar
  29. 29.
    Q. Wang, J. Zhang, G. Wang, H. Wang, M. Sun: Energy Fuels, 2018, vol. 32, pp. 2145–2155.CrossRefGoogle Scholar
  30. 30.
    MB Folgueras, RM Díaz, J Xiberta, I Prieto (2003) Fuel 82: 2051-2055.CrossRefGoogle Scholar
  31. 31.
    D. Fan, Z. Zhu, Y. Na, Q. Lu: Journal of Thermal Analysis and Calorimetry, 2012, vol.113, pp. 599-607.CrossRefGoogle Scholar
  32. 32.
    H. Li, L. Elliott, H. Rogers, P. Austin, Y. Jin, T. Wall: Energy & Fuels, 2012, vol.26, pp. 4690-4695.CrossRefGoogle Scholar
  33. 33.
    C. Zou, L. Wen, S. Zhang, C. Bai, G. Yin: Fuel Processing Technology, 2014, vol.119, pp. 136-145.CrossRefGoogle Scholar
  34. 34.
    X. Cui, X. Li, Y. Li, S. Li: Journal of Thermal Analysis and Calorimetry, 2017, vol.129, pp. 1169-1180.CrossRefGoogle Scholar
  35. 35.
    GR Gavalas, P.H.K. Cheong, R. Jain: Ind. Eng. Chem. Fundam, 1981, vol.20, pp. 113-122.CrossRefGoogle Scholar
  36. 36.
    H. Fei, P. Li, Y. Liu, Y. Li: Asia-Pacific Journal of Chemical Engineering, 2017, vol.12, pp. 25-32.CrossRefGoogle Scholar
  37. 37.
    E.E. Petersen: AIChE, 1957, vol.3, pp. 443-448.CrossRefGoogle Scholar
  38. 38.
    Zhang J-G, Sui Z.-G., Guo Q, Wang X-J, Yu G-S, Liu H-F, Wang F-C: J. Fuel Chem. Technol., 2017, vol. 45, pp. 129-137.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Chong Zou
    • 1
  • Jiangyong He
    • 1
  • Junxue Zhao
    • 1
    Email author
  • Xiaoming Li
    • 1
    Email author
  • Ruimeng Shi
    • 1
  • Cheng Ma
    • 1
  • Yi Kang
    • 1
  • Xiaorui Zhang
    • 1
  1. 1.School of Metallurgical EngineeringXi’an University of Architecture and TechnologyXi’anP.R. China

Personalised recommendations