Dynamic Wetting of High-Al Steel by CaO-SiO2- and CaO-Al2O3-Based Mold Fluxes

  • Jian Yang
  • Jianqiang ZhangEmail author
  • Oleg Ostrovski
  • Yasushi Sasaki
  • Chen Zhang
  • Dexiang Cai


Wetting of steel by mold fluxes affects the surface quality of steel products. Reaction between [Al] and mold fluxes in the continuous casting of high-Al steel leads to a dynamic interfacial phenomenon. This work investigated the wetting of the high-Al steel substrate by CaO-SiO2-based and CaO-Al2O3-based mold fluxes. The interfacial tensions were estimated and related to their high-temperature structures. The interface morphology revealed that CaO-SiO2-based mold flux and CaO-Al2O3-based mold flux with CaO/Al2O3 = 1 exhibited deep reaction zones in the steel substrates and irregular flux/steel interfaces, while CaO-Al2O3-based mold fluxes with CaO/Al2O3 = 2 and 3 showed smooth interfaces and superficial reaction zones. The sedation of dynamic wetting behavior in Samples 3 and 4 was related to the high viscosity in the flux droplet after the initial composition change, which led to the stabilization of the interface.



Financial supports from Baosteel-Australia Joint Research and Development Centre (BAJC) (BA16006) and Australian Research Council (ARC) Industrial Transformation Hub (IH140100035) are greatly acknowledged. The support for the thermodynamic calculation using FactSage 7.0 from Prof Yaru Cui, Xi’an University of Architecture and Technology is gratefully acknowledged.


  1. 1.
    J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee and S.-H. Kim: Metall. Mater. Trans. A, 2006, vol.37, pp. 1597-611.CrossRefGoogle Scholar
  2. 2.
    L. Zhang and B. G. Thomas: ISIJ Int., 2003, vol.43, pp. 271-91.CrossRefGoogle Scholar
  3. 3.
    G. Parry and O. Ostrovski: ISIJ Int., 2009, vol.49, pp. 788-95.CrossRefGoogle Scholar
  4. 4.
    E.-J. Jung, W. Kim, I. Sohn and D.-J. Min: J. Mater. Sci., 2010, vol.45, pp. 2023-29.CrossRefGoogle Scholar
  5. 5.
    E. J. Jung and D. J. Min: Steel Res. Int., 2012, vol.83, pp. 705-11.CrossRefGoogle Scholar
  6. 6.
    W. Wang, J. Li, L. Zhou and J. Yang: Met. Mater. Int., 2016, vol.22, pp. 700-06.CrossRefGoogle Scholar
  7. 7.
    W.-l. Wang, E.-z. Gao, L.-j. Zhou, L. Zhang and H. Li: J. Iron. Steel. Res. Int, 2019, vol.26, pp. 355-64.CrossRefGoogle Scholar
  8. 8.
    J. B. Kim, J. K. Choi, I. W. Han and I. Sohn: J. Non-Cryst. Solids, 2016, vol.432, pp. 218-26.CrossRefGoogle Scholar
  9. 9.
    P. V. Riboud and L. D. Lucas: Can. Metall. Quart., 1981, vol.20, pp. 199-208.CrossRefGoogle Scholar
  10. 10.
    Y. Chung and A. W. Cramb: Metall. Mater. Trans. B, 2000, vol.31, pp. 957-71.CrossRefGoogle Scholar
  11. 11.
    L. Zhou, J. Li, W. Wang and I. Sohn: Metall. Mater. Trans. B, 2017, vol.48, pp. 1943-50.CrossRefGoogle Scholar
  12. 12.
    P.-G. De Gennes, F. Brochard-Wyart and D. Quere: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York, NY, 2004, 275-76.CrossRefGoogle Scholar
  13. 13.
    P. F. McMillan, B. T. Poe, P. H. Gillet and B. Reynard: Geochim. Cosmochim. Ac, 1994, vol.58, pp. 3653-64.CrossRefGoogle Scholar
  14. 14.
    I. Sohn and D. J. Min: Steel Res. Int., 2012, vol.83, pp. 611-30.CrossRefGoogle Scholar
  15. 15.
    Z. Wang and I. Sohn: J. Am. Ceram. Soc., 2018, vol.101, pp. 4285-96.CrossRefGoogle Scholar
  16. 16.
    Y. Sun and Z. Zhang: Metall. Mater. Trans. B, 2015, vol.46, pp. 1549-54.CrossRefGoogle Scholar
  17. 17.
    B. Mysen and D. Neuville: Geochim. Cosmochim. Ac, 1995, vol.59, pp. 325-42.CrossRefGoogle Scholar
  18. 18.
    J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya: Metall. Mater. Trans. B, 2017, vol.48, pp. 2077-91.CrossRefGoogle Scholar
  19. 19.
    Y. Kim and K. Morita: ISIJ Int., 2014, vol.54, pp. 2077-83.CrossRefGoogle Scholar
  20. 20.
    G.-H. Kim and I. Sohn: J. Non-Cryst. Solids, 2012, vol.358, pp. 1530-37.CrossRefGoogle Scholar
  21. 21.
    T. S. Kim and J. H. Park: ISIJ Int., 2014, vol.54, pp. 2031-38.CrossRefGoogle Scholar
  22. 22.
    E. Gao, W. Wang and L. Zhang: J. Non-Cryst. Solids, 2017, vol.473, pp. 79-86.CrossRefGoogle Scholar
  23. 23.
    J. Gao, G. Wen, T. Huang, B. Bai, P. Tang and Q. Liu: J. Non-Cryst. Solids, 2016, vol.452, pp. 119-24.CrossRefGoogle Scholar
  24. 24.
    J. Gao, G. Wen, T. Huang, B. Bai, P. Tang and Q. Liu: J. Am. Ceram. Soc., 2016, vol.99, pp. 3941-47.CrossRefGoogle Scholar
  25. 25.
    P. McMillan and B. Piriou: J. Non-Cryst. Solids, 1983, vol.55, pp. 221-42.CrossRefGoogle Scholar
  26. 26.
    P. Tarte: Spectrochimica Acta Part A: Molecular Spectroscopy, 1967, vol.23, pp. 2127-43.CrossRefGoogle Scholar
  27. 27.
    J. H. Park, D. J. Min and H. S. Song: ISIJ Int., 2002, vol.42, pp. 38-43.CrossRefGoogle Scholar
  28. 28.
    J. Qi, C. Liu and M. Jiang: J. Non-Cryst. Solids, 2017, vol.475, pp. 101-07.CrossRefGoogle Scholar
  29. 29.
    D. R. Neuville, L. Cormier and D. Massiot: Chem. Geol., 2006, vol.229, pp. 173-85.CrossRefGoogle Scholar
  30. 30.
    L. Zhang, W. Wang, S. Xie, K. Zhang and I. Sohn: J. Non-Cryst. Solids, 2017, vol.460, pp. 113-18.CrossRefGoogle Scholar
  31. 31.
    E. I. Kamitsos, M. A. Karakassides and G. D. Chryssikos: J Phys. Chem., 1987, vol.91, pp. 1073-79.CrossRefGoogle Scholar
  32. 32.
    J.-Y. Park, G. H. Kim, J. B. Kim, S. Park and I. Sohn: Metall. Mater. Trans. B, 2016, vol.47, pp. 2582-94.CrossRefGoogle Scholar
  33. 33.
    G. H. Kim and I. Sohn: Metall. Mater. Trans. B, 2014, vol.45, pp. 86-95.CrossRefGoogle Scholar
  34. 34.
    G. Padmaja and P. Kistaiah: J. Phys. Chem. A, 2009, vol.113, pp. 2397-404.CrossRefGoogle Scholar
  35. 35.
    Y. Kim, Y. Yanaba and K. Morita: J. Am. Ceram. Soc., 2017, vol.100, pp. 5746-54.CrossRefGoogle Scholar
  36. 36.
    Z. Wang, Q. Shu and K. Chou: ISIJ Int., 2011, vol.51, pp. 1021-27.CrossRefGoogle Scholar
  37. 37.
    T. Young: Miscellaneous works of the late Thomas Young, J. Murray, London, 1855.Google Scholar
  38. 38.
    K. Nakashima and K. Mori: ISIJ Int., 1992, vol.32, pp. 11-18.CrossRefGoogle Scholar
  39. 39.
    B. J. Keene: Int. Mater. Rev., 1988, vol.33, pp. 1-37.CrossRefGoogle Scholar
  40. 40.
    S. I. Popel, B. V. Tsarevskiy and N. K. Dzhemilev: Fiz. Metal. Metalloved., 1964, vol.18, pp. 468-70.Google Scholar
  41. 41.
    W. R. Tyson and W. A. Miller: Surf. Sci., 1977, vol.62, pp. 267-76.CrossRefGoogle Scholar
  42. 42.
    B. J. Keene, K. C. Mills, J. W. Bryant and E. D. Hondros: Can. Metall. Quart., 1982, vol.21, pp. 393-403.CrossRefGoogle Scholar
  43. 43.
    M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee and Y.-B. Kang: Metall. Mater. Trans. B, 2013, vol.44, pp. 299-308.CrossRefGoogle Scholar
  44. 44.
    H. Zhu, K. Dong, J. Huang, J. Li, G. Wang and Z. Xie: Mater. Chem. Phys., 2014, vol.145, pp. 334-41.CrossRefGoogle Scholar
  45. 45.
    G. Parry and O. Ostrovski: Metall. Mater. Trans. B, 2008, vol.39, pp. 669-80.CrossRefGoogle Scholar
  46. 46.
    B. Hallstedl: J. Am. Ceram. Soc., 1990, vol.73, pp. 15-23.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Jian Yang
    • 1
  • Jianqiang Zhang
    • 1
    Email author
  • Oleg Ostrovski
    • 1
  • Yasushi Sasaki
    • 2
  • Chen Zhang
    • 3
  • Dexiang Cai
    • 3
  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Department of MetallurgyTohoku UniversitySendaiJapan
  3. 3.Baosteel Group Corporation Research InstituteShanghaiP.R. China

Personalised recommendations