Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2273–2283 | Cite as

Numerical Analysis of Molten Pool Behavior and Spatter Formation with Evaporation During Selective Laser Melting of 316L Stainless Steel

  • Pingmei Tang
  • Haiqiong Xie
  • Sen Wang
  • Xueping Ding
  • Qi Zhang
  • Honglin Ma
  • Jie Yang
  • Shuqian Fan
  • Mujun Long
  • Dengfu ChenEmail author
  • Xuanming DuanEmail author
Article

Abstract

During the selective laser-melting process, material evaporation and resultant spatter are common phenomena that bring about many defects. However, the underlying physical phenomena such as molten pool behavior and spatter formation, as evaporation occurred, are sparsely understood and difficult to observe during the process. Thus, a three–dimensional powder-scale model was established to investigate the thermal and flow behavior of the molten pool, the morphology evolution of the molten pool and keyhole, and the spatter formation with evaporation in the selective laser-melting processing of 316L stainless steel. Phase transitions and variations in interfacial force were taken into account in this model. The modified phase-field method was applied to trace the melt–gas interface. The results showed that keyhole formed in molten pool under recoil pressure, and that there were some differences in the temperature distribution and flow behavior inside and outside the keyhole. In addition, the dimension and surface morphology of the molten pool and keyhole depth altered and gradually stabilized during the process. Moreover, droplet spatter formation at rear of molten pool proceeded roughly as follows: the backward ejection of melt vapor would induce a depression in molten pool and a bump on the molten pool surface, the bump moved backward and subsequently a liquid column formed, then the liquid column formed a neck and gradually pinched off, resulting in the droplet spatter. Furthermore, the characteristic morphology of the scan track and dimension of the molten pool were obtained through experiments, which showed good agreement with the simulation results.

Notes

Acknowledgments

This work was supported by the Key Programs of the Chinese Academy of Sciences [Grant Number KGZD-EW-T0], the National Natural Science Foundation of China [Grant Number 11702290], the CAS “Light of West China” Program, and the Chongqing Research of Application Foundation and Advanced Technology [Grant Number cstc2016jcyjA0321].

References

  1. 1.
    M. Wang, W. Li, Y. Wu, S. Li, C. Cai, S. Wen, Q. Wei, Y. Shi, F. Ye, and Z. Chen: Metall. Mater. Trans. B, 2019, vol. 50, pp. 531–42.CrossRefGoogle Scholar
  2. 2.
    K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, and F. Rezai: Mater. Sci. Eng. A, 2018, vol. 735, pp. 182–90.CrossRefGoogle Scholar
  3. 3.
    C.Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, p. 041101.CrossRefGoogle Scholar
  4. 4.
    V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste, I. Koutiri, and R. Fabbro: J. Mater. Process. Tech., 2018, vol. 251, pp. 376–86.CrossRefGoogle Scholar
  5. 5.
    L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez, and T. Özel: Int. J. Mach. Tools Manuf., 2017, vol. 121, pp. 22–36.CrossRefGoogle Scholar
  6. 6.
    D. Dai and D. Gu: Appl. Surf. Sci., 2015, vol. 355, pp. 310–19.CrossRefGoogle Scholar
  7. 7.
    Y. Liu, Y. Yang, S. Mai, D. Wang, and C. Song: Mater. Des., 2015, vol. 87, pp. 797–806.CrossRefGoogle Scholar
  8. 8.
    A. Anwar and P. Quang-Cuong: in Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), 2018, pp. 541–46.Google Scholar
  9. 9.
    V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, C. Frédéric, and F. Rémy: J. Laser Appl., 2017, vol. 29, p. 022303.CrossRefGoogle Scholar
  10. 10.
    M. TaheriAndani, R. Dehghani, M.R. Karamooz-Ravari, R. Mirzaeifar, and J. Ni: Addit. Manuf., 2018, vol. 20, pp. 33–43.CrossRefGoogle Scholar
  11. 11.
    D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, and C. Song: Mater. Des., 2017, vol. 117, pp. 121–30.CrossRefGoogle Scholar
  12. 12.
    F. Verhaeghe, T. Craeghs, J. Heulens, and L. Pandelaers: Acta Mater., 2009, vol. 57, pp. 6006–12.CrossRefGoogle Scholar
  13. 13.
    A. Masmoudi, R. Bolot, and C. Coddet: J. Mater. Process. Technol., 2015, vol. 225, pp. 122–32.CrossRefGoogle Scholar
  14. 14.
    Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, and W.-S. Hwang: J. Mater. Process. Technol., 2018, vol. 254, pp. 72–78.CrossRefGoogle Scholar
  15. 15.
    S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King: Acta Mater., 2016, vol. 108, pp. 36–45.CrossRefGoogle Scholar
  16. 16.
    C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, and M.M. Attallah: Acta Mater., 2015, vol. 96, pp. 72–79.CrossRefGoogle Scholar
  17. 17.
    P. Wei, Z. Wei, Z. Chen, Y. He, and J. Du: Appl. Phys. A, 2017, vol. 123, p. 604.CrossRefGoogle Scholar
  18. 18.
    Z. Chen, Y. Xiang, Z. Wei, P. Wei, B. Lu, L. Zhang, and J. Du: Appl. Phys. A, 2018, vol. 124, p. 313.CrossRefGoogle Scholar
  19. 19.
    V.R. Voller and C. Prakash: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 1709–19.CrossRefGoogle Scholar
  20. 20.
    C. Mickael, M. Carin, P. Le Masson, S. Gaied, and B. Mikhaël: J. Phys. D. Appl. Phys., 2013, vol. 46, p. 505305.CrossRefGoogle Scholar
  21. 21.
    V. Bruyere, C. Touvrey, P. Namy, and N. Authier: J. Laser Appl., 2017, vol. 29, p. 022403.CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, Z. Shen, and X. Ni: Int. J. Heat Mass Transf., 2014, vol. 73, pp. 429–37.CrossRefGoogle Scholar
  23. 23.
    C. Touvrey, V. Bruyere, and P. Namy: A Phase Field Approach to Model Laser Power Control in Spot Laser Welding, https://cn.comsol.com/paper/download/199279/touvrey_paper.pdf. Accessed 25 March 2016
  24. 24.
    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.CrossRefGoogle Scholar
  25. 25.
    D. Dai and D. Gu: Int. J. Mach. Tools Manuf., 2016, vol. 100, pp. 14–24.CrossRefGoogle Scholar
  26. 26.
    F. Hardesty: Metals Handbook, Ninth Edition. Volume 3, Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Metals, vol. 6, 1982.Google Scholar
  27. 27.
    A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. Golabi: Mater. Des., 2016, vol. 89, pp. 255–63.CrossRefGoogle Scholar
  28. 28.
    K.-H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L.S. Sigl: Met. Powder Rep., 2017, vol. 72, pp. 331–38.CrossRefGoogle Scholar
  29. 29.
    K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead, Wiltshire, England, 2002.CrossRefGoogle Scholar
  30. 30.
    M. Markl and C. Körner: Annu. Rev. Mater. Res., 2016, vol. 46, pp. 93–123.CrossRefGoogle Scholar
  31. 31.
    J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng: Mater. Des., 2016, vol. 110, pp. 558–70.CrossRefGoogle Scholar
  32. 32.
    R. Lin, H. Wang, F. Lu, J. Solomon, and B.E. Carlson: Int. J. Heat Mass Transf., 2017, vol. 108, pp. 244–56.CrossRefGoogle Scholar
  33. 33.
    A. V Gusarov and I. Smurov: Phys. Procedia, 2010, vol. 5, pp. 381–94.CrossRefGoogle Scholar
  34. 34.
    W. Tan, N. S Bailey, and Y. Shin: J. Phys. D. Appl. Phys., 2013, vol. 46, p. 055501.CrossRefGoogle Scholar
  35. 35.
    J. Deng: Hunan University, 2016.Google Scholar
  36. 36.
    R. Fabbro, S. Slimani, I. Doudet, C. Frederic, and F. Briand: J. Phys. D. Appl. Phys., 2006, vol. 39, p. 394.CrossRefGoogle Scholar
  37. 37.
    S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews: Sci. Rep., 2017, vol. 7, p. 4085.CrossRefGoogle Scholar
  38. 38.
    C.D. Boley, S.C. Mitchell, A.M. Rubenchik, and S.S.Q. Wu: Appl. Opt., 2016, vol. 55, pp. 6496–500.CrossRefGoogle Scholar
  39. 39.
    C. Panwisawas, C. Qiu, M.J. Anderson, Y. Sovani, R.P. Turner, M.M. Attallah, J.W. Brooks, and H.C. Basoalto: Comput. Mater. Sci., 2017, vol. 126, pp. 479–90.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Pingmei Tang
    • 1
  • Haiqiong Xie
    • 2
    • 3
  • Sen Wang
    • 2
    • 3
  • Xueping Ding
    • 2
    • 3
  • Qi Zhang
    • 2
    • 3
  • Honglin Ma
    • 2
    • 3
  • Jie Yang
    • 2
    • 3
  • Shuqian Fan
    • 2
    • 3
  • Mujun Long
    • 1
  • Dengfu Chen
    • 1
    Email author
  • Xuanming Duan
    • 2
    • 3
    Email author
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina
  3. 3.Chongqing Key Laboratory of Additive Manufacturing Technology and SystemChongqingChina

Personalised recommendations