Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2259–2272 | Cite as

Thermal Properties of Carbon-Containing Iron Ore Composite Prepared by Vapor Deposition of Tar for Limonite

  • Yuuki Mochizuki
  • Naoto TsubouchiEmail author
Article
  • 36 Downloads

Abstract

The optimal conditions for preparing composites, in which tar-derived carbonaceous materials completely fill the pores in Indonesian limonite(IL), were investigated using the vapor deposition (VD) method of tar. Characterization of the composites and their reactivity (reduction/combustion/gasification) during heat treatment was examined. The specific surface area and pore volume of the as-received-IL and dehydrated-IL decreased after the VD treatment for different combinations of tar pyrolysis temperature (TPT) and VD temperature (VDT). It was also noted that the carbon content and crushing strength of the samples increased after the VD treatment, and the optimal values for the TPT-VDT are 700 °C and 350 °C. The C content and the crushing strengths of the composites prepared at TPT-VDT = 700 °C to 350 °C increased with an increase of the VD time to 50 pct carbon content and 10 daN at 240 minutes, respectively. The strength was similar to that of commercial metallurgical coke used in blast furnaces. The reduction of the composite prepared at TPT-VDT = 700 °C to 350 °C for 240 minutes started above 400 °C and was almost completed at 1000 °C. This reduction rate was higher than that of commercial cold-bonded pellets or a coke/IL mixture. The combustion and gasification rates of the composites prepared under different conditions depended on the preparation condition of composites, and the rates were higher than those of commercial metallurgical coke used in blast furnaces.

Notes

Acknowledgments

The present study was supported in part by the JFE 21st Century Foundation. The authors acknowledge the supply of limonite from Kobe Steel Ltd. and Mitsubishi Chemical Corp. in Japan.

References

  1. 1.
    T. Sato, M. Sato, K. Takeda and T. Arima: Testu-to-hagane, 2006, vol. 92, pp. 1006-1014.CrossRefGoogle Scholar
  2. 2.
    T. Murakami, T. Kodaira, and E. Kasai: ISIJ Int., 2015, vol. 55, pp. 1181-1187.CrossRefGoogle Scholar
  3. 3.
    C. Fukumoto, K. Sato, N. Ohyama and M. Sato: CAMP-ISIJ, 2009, vol. 22, pp. 828.Google Scholar
  4. 4.
    M. Naito, A. Okamoto, K. Yamaguchi, T. Yamaguchi and Y. Inoue: Shinnittetsu Giho, 2006, vol. 384, pp. 95-99Google Scholar
  5. 5.
    Y. Matsui, M. Sawayama, A. Kasai, Y. Yamaguchi and F. Noma: ISIJ Int., 2003, vol. 43, pp. 1904-1912.CrossRefGoogle Scholar
  6. 6.
    A. Kasai, M. Naito, Y. Matsui and Y. Yamagata: Tetsu-to-hagane, 2003, vol. 89, pp. 1212-1219.CrossRefGoogle Scholar
  7. 7.
    K. Miura, K. Miyabayashi, M. Kawanari and R. Ashida: ISIJ Int., 2011, vol. 51, pp. 1234-1239.CrossRefGoogle Scholar
  8. 8.
    M. Kawanari, A. Matsumoto, R. Ashida and K. Miura: ISIJ Int., 2011, vol. 51, pp. 1227-1233.CrossRefGoogle Scholar
  9. 9.
    Y. Hata, S. Hosokai, J.-i. Hayashi and T. Akiyama: CAMP-ISIJ., 2007, vol. 20, pp. 923.Google Scholar
  10. 10.
    Y. Hata, H. Purwanto, S. Hosokai, J.-i. Hayashi, Y. Kashiwaya and T. Akiyama: Energy Fuels., 2009, vol. 23, pp. 1128-1131.CrossRefGoogle Scholar
  11. 11.
    S. Hosokai, K. Matsui, N. Okinaka, K.-i. Ohno, M. Shimizu and T. Akiyama: Energy Fuels., 2012, vol. 26, pp. 7274-7279.CrossRefGoogle Scholar
  12. 12.
    R. B. Cahyono, G. Saito, N. Yasuda, T. Nomura, and T. Akiyama: Energy Fuels, 2014, vol. 28, pp. 2129-2134.CrossRefGoogle Scholar
  13. 13.
    Y. Mochizuki, Tsubouchi and T. Akiyama: Fuel Process. Technol., 2015, vol. 138, pp. 704–13.Google Scholar
  14. 14.
    Y. Mochizuki, M. Nishio, N. Tsubouchi and T. Akiyama: Fuel Process. Technol., 2016, vol. 142, pp. 287-295.CrossRefGoogle Scholar
  15. 15.
    Y. Mochizuki, M. Nishio, N. Tsubouchi and T. Akiyama: Energy Fuels., 2016, vol. 30, pp. 2102-2110.CrossRefGoogle Scholar
  16. 16.
    Y. Mochizuki, M. Nishio, J. Ma, N. Tsubouchi and T. Akiyama: Energy Fuels., 2016, vol. 30, pp. 6233-6239.CrossRefGoogle Scholar
  17. 17.
    Y. Mochizuki, M. Nishio, N. Tsubouchi and T. Akiyama: Energy Fuels., 2017, vol. 31, pp. 8877-8885.CrossRefGoogle Scholar
  18. 18.
    Y. Mochizuki, N. Tsubouchi and T. Akiyama: ISIJ Int., 2018, vol. 58, pp. 460.CrossRefGoogle Scholar
  19. 19.
    Y. Mochizuki, N. Tsubouchi and T. Akiyama: Fuel Process. Technol., 2018, vol. 176, pp. 21-32.CrossRefGoogle Scholar
  20. 20.
    Y. Mochizuki, M. Y. Kubota, K. Uebo, and N. Tsubouchi: Fuel, 2018, vol. 232, pp. 780-790.CrossRefGoogle Scholar
  21. 21.
    H. Naono and R. Fujiwara: J. Colloid Interface Sci., 1980, vol. 73, pp. 406-468.CrossRefGoogle Scholar
  22. 22.
    M. Egashira, H. Katsuki, Y. Ezaki, K. Ichiyama, T. Kamitani and S. Kawasumi S: Sekiyu Gakkaishi, 1985, vol. 28, pp. 246-251.CrossRefGoogle Scholar
  23. 23.
    N. Tsubouchi, A. Ogawa, and Y. Mochizuki: Appl. Catal. A-General 2015, vol. 499, pp. 133-138.CrossRefGoogle Scholar
  24. 24.
    N. Tsubouchi, Y.Mikawa, Y.Mochizuki, K.Takemitsu, and Y. Ohtsuka, Energy Fuels 2017, vol. 31, pp. 3885-3891.CrossRefGoogle Scholar
  25. 25.
    Y. Ohtsuka, Y. Kuroda, Y. Tamai and A. Tomita: Fuel, 1986, vol. 65, pp. 1476-1478.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Center for Advanced Research of Energy and MaterialsHokkaido UniversitySapporoJapan

Personalised recommendations