Advertisement

Reaction Mechanism and Kinetics of Boron Removal from Molten Silicon via CaO-SiO2-CaCl2 Slag Treatment and Ammonia Injection

  • Hui Chen
  • Xizhi Yuan
  • Kazuki Morita
  • Yanjun Zhong
  • Xiaodong Ma
  • Zhiyuan Chen
  • Ye WangEmail author
Communication
  • 5 Downloads

Abstract

To improve the boron-removal efficiency of metallurgical-grade silicon by increasing the reaction rate, a combined method with the 30 mol pct CaO-23.3 mol pct SiO2-46.7 mol pct CaCl2 slag treatment and ammonia injection at 1723 K to 1823 K was proposed. For 1 hour and at 1823 K, the maximum removal efficiency of boron was 98 pct, and the final boron concentration in silicon decreased to 1.5 ppmw by the present method without the introduction of the iron catalyst. A kinetic model was also established to clarify the reaction mechanism and rate-limiting steps of this complicated boron-removal process. In this model, the rate-limiting step is the mass transfer of boron oxide at the interface between the slag and silicon phase.

Nomenclature

T

Kelvin temperature (K)

ρm

The density of silicon (kg/m3)

ρg

The density of ammonia (kg/m3)

c[B]

The B concentration in Si (mol/m3)

\( c_{{{\text{SiO}}_{2} }} \)

The SiO2 concentration in the slag (mol/m3)

ca

The NH3 concentration in the slag (mol/m3)

γ[B]

The activity coefficient of B

c[B], 0

Initial B concentration in Si (mol/m3)

k[B]

Mass transfer coefficient of B at the interface (Si/slag) (m/s)

\( k_{{ ( {\text{BO}}_{3/2} ),{\text{s}}}} \)

Mass transfer coefficient of BO3/2 at the interface (slag/gas) (m/s)

\( k_{{ ( {\text{BO}}_{3/2} ),{\text{b}}}} \)

Mass transfer coefficient of BO3/2 at the interface (NH3/slag) (m/s)

pa

The pressure of bubbles (Pa)

μs

The viscosity of the slag (Pa s)

u0

The flow rate of NH3 in the corundum tube (m/s)

σ

Surface tension between NH3 gas and slag (N/m)

g

Gravitational constant (N/kg)

Sh

Sherwood number

a[Si]

The activity of Si

Vm

The volume of Si (m3)

Vs

The volume of the slag (m3)

\( D_{{ ( {\text{BO}}_{3/2} )}} \)

Diffusion coefficient of BO3/2 in the slag (m2/s)

H

Henry’s constant (Pa m3/mol)

R

Ideal gas constant (J/(K·mol))

ρs

The density of the slag (kg/m3)

\( c_{{ ( {\text{BO}}_{3/2} )}} \)

The B concentration in the slag (mol/m3)

cBOCl

BOCl concentration in gas (mol/m3)

\( \gamma_{{ ( {\text{BO}}_{3/2} )}} \)

The activity coefficient of BO3/2

γa

The activity coefficient of NH3

\( c_{{ ( {\text{BO}}_{3/2} ),0}} \)

Initial BO3/2 concentration in the slag (mol/m3)

r

The average radius of bubbles (m)

\( k_{{{\text{SiO}}_{2} }} \)

Mass transfer coefficient of SiO2 at the interface (Si/slag) (m/s)

\( k_{{ ( {\text{BO}}_{3/2} ),{\text{i}}}} \)

Mass transfer coefficient of BO3/2 at the interface (Si/slag) (m/s)

kr

The constant for Eq. [9] (m/s)

d0

The diameter of ammonia gas tube (m)

db

The average diameter of bubbles (m)

ub

The rising rate of bubbles in the slag (m/s)

δ

The thickness of the boundary layer (m)

hs

The height of the slag (m)

Sc

Schmidt number

\( a_{{{\text{SiO}}_{2} }} \)

The activity of SiO2

Si

The area of the interface (Si/slag) (m2)

Ss

The area of the interface (slag/gas) (m2)

Da

Diffusion coefficient of NH3 in the slag (m2/s)

t

Reaction time (s)

Notes

This work was supported by the NSFC Project (No. 51604176), and the Chengdu Science and Technology Benefiting Project (No. 2016-HM01-00399-SF). We thank for Mr. Amit Patel (The University of Tokyo) for his linguistic assistance during the preparation of this manuscript.

References

  1. 1.
    L.P. Bloomberg Finance: Q4 2016 Global PV Market outlook, 2016, pp. 1–3.Google Scholar
  2. 2.
    Fraunhofer, I.S.E., 2017. Photovoltaics report. Fraunhofer ISE, Freiburg, 19-20.Google Scholar
  3. 3.
    Y. Wang and K. Morita: Metall. Mater. Trans. B, 2016, vol. 47B(3), pp. 1542-47.CrossRefGoogle Scholar
  4. 4.
    L. Huang, H. Lai, C. Gan, H. Xiong, P. Xing, and X. Luo: Sep. Purif. Technol., 2016, vol. 170, pp. 408-16.CrossRefGoogle Scholar
  5. 5.
    H. Morito, M. Uchikoshi, and H. Yamane: Sep. Purif. Technol., 2013, vol. 118, pp. 723-26.CrossRefGoogle Scholar
  6. 6.
    H. C. Theuerer: JOM, 1956, vol. 8(10), pp. 1316-19.CrossRefGoogle Scholar
  7. 7.
    L. K. Jakobsson and M. Tangstad: Metall. Mater. Trans. B, 2018, vol. 49(4), pp.1699-708.CrossRefGoogle Scholar
  8. 8.
    M. S. Islam, and M. A. Rhamdhani: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3171-85.CrossRefGoogle Scholar
  9. 9.
    Y. Wang, X. Ma, and K. Morita: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 334-37.CrossRefGoogle Scholar
  10. 10.
    H. Chen, Y. Wang, W. Zheng, Q. Li, X. Yuan, and K. Morita: Metall. and Mater. Trans. B, 2017, vol. 48, pp. 3219-27.CrossRefGoogle Scholar
  11. 11.
    Z. Chen and K. Morita: Metall. Mater. Trans. E, 2016, vol. 3, pp. 228-30.Google Scholar
  12. 12.
    M. Vadon, Ø. Sortland, I. Nuta, C. Chatillon, M. Tansgtad, G. Chichignoud, and Y. Delannoy: Metall. Mater. Trans. B, 2018, vol. 49(3), pp. 1288-301.CrossRefGoogle Scholar
  13. 13.
    J. E. Olsen, I. T. Kero, T. A. Engh, and G. Tranell: Metall. Mater. Trans. B, 2017, vol. 48(2), pp. 870-7.CrossRefGoogle Scholar
  14. 14.
    G. Qian, Z. Wang, X. Gong, and L. Sun: Metall. Mater. Trans. B, 2017, vol. 48(6), pp. 3239-50.CrossRefGoogle Scholar
  15. 15.
    Y. Wang and K. Morita: J. Sustain. Metall. 2015, vol. 1, pp. 26-33.Google Scholar
  16. 16.
    L. A. V. Teixeira, Y. Tokuda, T. Yoko, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 777-82.CrossRefGoogle Scholar
  17. 17.
    W. Jiang, W. Yu, H. Qin, Y. Xue, C. Li, and X. Lv: Int. J. Hydrogen Energy, 2019, vol. 44(26), pp. 13502-08.CrossRefGoogle Scholar
  18. 18.
    Z. Xia, J. Wu, W. Ma, Y. Lei, K. Wei, and Y. Dai: Sep. Purif. Technol., 2017, vol. 187, pp. 25-33.CrossRefGoogle Scholar
  19. 19.
    C. Lu, L. Huang, H. Lai, M. Fang, W. Ma, P. Xing, L. Zhang, J. Li, and X. Luo: Sep Sci Technol., 2015, vol. 50(17), pp. 2759-66.Google Scholar
  20. 20.
    I. Leibson, E. G. Holcomb, A. G. Cacoso, and J. J. Jacmic: AIChE J., 1956, vol. 2, pp. 300-6.CrossRefGoogle Scholar
  21. 21.
    J. R. Grace, T. Wairegi, and T. H. Nguyen: Trans. Inst. Chem. Eng., 1976, vol. 54, pp. 167-73.Google Scholar
  22. 22.
    Y. Marcus: Thermochim. Acta, 2013, vol. 571, pp. 77-81.CrossRefGoogle Scholar
  23. 23.
    L. A. V. Teixeira and K. Morita: ISIJ Int., 2009, vol. 49, pp. 783-7.CrossRefGoogle Scholar
  24. 24.
    W. K. Rhim and K. Ohsaka: J. Cryst. Growth, 2000, vol. 208, pp. 313-21.CrossRefGoogle Scholar
  25. 25.
    L. Zhang: Ph.D. dissertation, Dalian university of Technology, 2013.Google Scholar
  26. 26.
    L. Zhang, Y. Tan, J. Li, Y. Liu, and D. Wang: Mat. Sci. Semicon. Proc., 2013, vol. 16, pp. 1645-9.CrossRefGoogle Scholar
  27. 27.
    F. Wang, J. Wu, W. Ma, Y. Lei, K. Wei, and B. Yang: J. Chem. Thermodyn., 2018, vol. 118, pp. 215-24.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Hui Chen
    • 1
    • 2
  • Xizhi Yuan
    • 1
  • Kazuki Morita
    • 2
  • Yanjun Zhong
    • 1
  • Xiaodong Ma
    • 3
  • Zhiyuan Chen
    • 4
  • Ye Wang
    • 1
    Email author
  1. 1.School of Chemical EngineeringSichuan UniversityChengduP.R. China
  2. 2.Department of Materials EngineeringThe University of TokyoTokyoJapan
  3. 3.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  4. 4.Department of Materials Science and EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations