Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2334–2342 | Cite as

Numerical Simulation of Metal Melt Flow in a One-Strand Tundish Regarding Active Filtration and Reactive Cleaning

  • Sebastian NeumannEmail author
  • Amjad Asad
  • Tom Kasper
  • Rüdiger Schwarze
Article
  • 102 Downloads

Abstract

In the paper, two different cleaning strategies for nonmetallic inclusions in steel melts, active filtration and reactive cleaning, are examined in a prototype tundish configuration. In active filtration, nonmetallic inclusions are deposited at the filter surfaces. In reactive cleaning, nonmetallic inclusions stick to the filter surfaces, too. In addition, they are floated by the action of carbon monoxide bubbles, which are generated by reaction between carbon and oxygen in the steel melt. In order to compare the performance of both strategies, numerical simulations of the two-phase flows of steel melt and dispersed nonmetallic inclusions are performed. Turbulence is resolved with implicit large eddy simulation. If necessary, species transports of dissolved carbon in the melt and reaction with oxygen are employed. Cleaning efficiencies are deduced from the simulations which demonstrate that reactive cleaning is much more efficient than active filtration.

Notes

Acknowledgments

The authors are grateful to the German Research Foundation (DFG) for supporting the Collaborative Research Center CRC 920, subprojects: T01, B06. The computations were performed on a Bull Cluster at the Center for Information Services and High Performance Computing (ZIH) at TU Dresden.

References

  1. 1.
    L. Zhang, and B. G. Thomas, ISIJ Int., 2003, vol. 43, pp. 271 – 291.CrossRefGoogle Scholar
  2. 2.
    K.-I. Uemura, M. Takahashi, S. Koyama, and M. Nitta, ISIJ Int., 1992, vol. 32, pp. 150 – 156.CrossRefGoogle Scholar
  3. 3.
    K. Janiszewski, Steel Res. Int., 2012, vol. 84, pp. 288 – 296.CrossRefGoogle Scholar
  4. 4.
    K. Janiszewski, and B. Panic, Metalurgija, 2014, vol. 53, pp. 339 – 342.Google Scholar
  5. 5.
    K. Janiszewski, B. Gajdzik, K. Gryc, L. Socha, and A. Bogdał, Solid State Phenom., 2015, vol. 226, pp. 189 – 192.CrossRefGoogle Scholar
  6. 6.
    C. G. Aneziris, S. Dudczig, J. Hubálková, M. Emmel, and G. Schmidt, Ceram. Int., 2013, vol. 39, pp. 2835 – 2843.CrossRefGoogle Scholar
  7. 7.
    A. Schmidt, A. Salomon, S. Dudczig, H. Berek, D. Rafaja, C. G. Aneziris: Adv. Eng. Mater. vol. 19, p. 1700170 (2017).CrossRefGoogle Scholar
  8. 8.
    M. Schlautmann, B. Kleimt, A. Kubbe, Andreas, R. Teworte, D. Rzehak, D. Senk, A. Jaklic, and M. Klinar, Stahl. Eisen, 2011, vol. 131, pp. 57-65.Google Scholar
  9. 9.
    D. Rzehak: Beschleunigte Entkohlung von Stahlschmelzen im Vakuum durch Kombination von Sauerstoff und Metalloxiden. PhD thesis (in German), RWTH Aachen, 2013.Google Scholar
  10. 10.
    E. Storti, S. Dudczig, A. Schmidt, G. Schmidt, and C. G. Aneziris, Steel Res. Int., 2017, vol. 88, p. 1700142.CrossRefGoogle Scholar
  11. 11.
    A. Asad, M. Haustein, K. Chattopadhyay, C. G. Aneziris, and R. Schwarze, JOM, 2018, vol. 70, pp. 2927-2933.CrossRefGoogle Scholar
  12. 12.
    T. Wetzig, A. Baaske, S. Karrasch, N. Brachhold, M. Rudolph, and C. G. Aneziris, Ceram Int., 2018, vol. 44, pp. 23024-23034.CrossRefGoogle Scholar
  13. 13.
    A. Asad, K. Bauer, K. Chattopadhyay, and R. Schwarze, Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1378 – 1387.CrossRefGoogle Scholar
  14. 14.
    A. Asad, K. Chattopadhyay, and R. Schwarze, Metall. Mater. Trans. B, 2018, vol. 49B , pp. 1543 – 1916.Google Scholar
  15. 15.
    A. Asad, E. Werzner, C. Demuth, S. Dudczig, A. Schmidt, S. Ray, C. G. Aneziris, and R. Schwarze, Adv. Eng. Mater., 2017, vol. 19, p. 1700085.CrossRefGoogle Scholar
  16. 16.
    J. Smagorinsky, Mon. Weather Rev., 1936, vol. 91, p. 99.CrossRefGoogle Scholar
  17. 17.
    H. Kim, J. G. Kim, and Y. Sasaki: ISIJ Int., vol. 50, pp. 678–685, 2010.CrossRefGoogle Scholar
  18. 18.
    A. Asad, C. Kratzsch, S. Dudczig, C. G. Aneziris, and R. Schwarze, Int. J. Heat Fluid Flow, 2016, vol. 62, pp. 299 – 312.CrossRefGoogle Scholar
  19. 19.
    R. Schwarze, J. Klostermann, and C. Brücker, Int. J. Heat Fluid Flow, 2008, vol. 29, pp. 1688 – 1698.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Sebastian Neumann
    • 1
    Email author
  • Amjad Asad
    • 1
  • Tom Kasper
    • 1
  • Rüdiger Schwarze
    • 1
  1. 1.Institute of Mechanics and Fluid DynamicsTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations