Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2459–2470 | Cite as

Interaction Between Liquid Steel and AlN Substrate Containing Al-Y-Oxides

  • Yan Luo
  • Ming Li
  • Piotr R. Scheller
  • Seetharaman Sridhar
  • Lifeng ZhangEmail author
Article
  • 67 Downloads

Abstract

Reactions between molten iron, molten silicon steel, and ceramic materials are of great importance from the perspective of the corrosion of refractory material in the steelmaking and continuous casting processes. Reactions between liquid steel and aluminum nitride (AlN) substrate containing Al-Y-oxides were investigated using the sessile drop method at 1833 K (1560 °C). The liquid–substrate interface was observed with the increasing holding time, and the reaction mechanism was studied. In the case of the liquid iron and the silicon steel on the AlN substrate containing Al-Y-oxides, the reaction products on the steel side of the interface between the steel and the substrate were Al-rich Al-Y-oxides and Al2O3 particles. For silicon steel and pure AlN substrate, Al2O3 particles were the main products. Contact angles were lower for liquid iron than for silicon steel due to the higher oxygen content in iron. In addition, the solid–liquid interfacial tension and the work of adhesion between AlN and steel were measured.

Notes

Acknowledgments

The authors are grateful for the support from the National Science Foundation China (Grant No. 51725402), Beijing Science and Technology Program of ‘Phase Transformation in Oxides under the Condition’, the Fundamental Research Funds for the Central Universities (Grant No. FRT-TP-17-001C2 and Grant No. FRT-TP-18-096A1), Beijing Science & Technology Program (No. Z171100002217063), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), and the High Quality steel Consortium (HQSC) and Green Process Metallurgy and Modeling (GPM2) at the School of Metallurgical and Ecological Engineering at the University of Science and Technology Beijing (USTB), China.

References

  1. 1.
    J. C. Labbe and A. Laimeche: J. Eur. Ceram. Soc., 1996, vol. 16, pp. 893-898.CrossRefGoogle Scholar
  2. 2.
    A. Amadeh, J. C. Labbe, A. Laimeche, and P. Quintard: J. Eur. Ceram. Soc., 1996, vol. 16, pp. 403-408.CrossRefGoogle Scholar
  3. 3.
    C. Xuan, H. Shibata, Z. Zhao, P. G. Jönsson, and K. Nakajima: ISIJ Int., 2015, vol. 55, pp. 1642-1651.CrossRefGoogle Scholar
  4. 4.
    A. Amadeh, S. Heshmati-Manesh, J. C. Labbe, A. Laimeche, and P. Quintard: J. Eur. Ceram. Soc., 2001, vol. 21, pp. 277-282.CrossRefGoogle Scholar
  5. 5.
    K. Watari: J. Ceram. Soc. Jpn. 2001, vol. 109, pp. 7-16.CrossRefGoogle Scholar
  6. 6.
    M. Entezarian and R. A. L. Drew: Mater. Sci. Eng. A, 1996, vol. 212, pp. 206-212.CrossRefGoogle Scholar
  7. 7.
    A. Amadeh, J. C. Labbe, and P. E. Quintard: Corros. Sci., 2004, vol. 46, pp. 183-191.CrossRefGoogle Scholar
  8. 8.
    N. Y. Taranets and H. Jones: J. Mater. Sci., 2005, vol. 40. pp. 2355-2359.CrossRefGoogle Scholar
  9. 9.
    A. Koltsov, M. Dumont, F. Hodaj, and N. Eustathopoulos: Mater. Sci. Eng., 2006, vol. 415, pp. 171-176.CrossRefGoogle Scholar
  10. 10.
    G. R. Prin, T. Baffie, M. Jeymond, and N. Eustathopoulos: Mater. Sci. Eng. A, 2001, vol. 298, pp. 34-43.CrossRefGoogle Scholar
  11. 11.
    H. N. Ho and S. T. Wu: Mater. Sci. Eng., 1998, vol. 248, pp. 120-124.CrossRefGoogle Scholar
  12. 12.
    H. Shibata, Y. Watanabe, K. Nakajima, and S. Kitamura: ISIJ Int., 2009, vol. 49, pp. 985-991.CrossRefGoogle Scholar
  13. 13.
    K. Naito, T. Tsuji, and S.Watanabe: Solid State Ionics,1980, vol. 1, pp. 509.CrossRefGoogle Scholar
  14. 14.
    K. Tomioka and H. Suito: Bull. Inst. Adv. Mater. Process., 1991, vol. 47, pp. 10.Google Scholar
  15. 15.
    H. Mitsutaka and I. Kimihisa: Thermodynamic Data for Steelmaking. Tohoku University Press, Sendai, 2010.Google Scholar
  16. 16.
    J. Chen: Steelmaking Data. Metallurgical Industry Press, Beijing, 2010.Google Scholar
  17. 17.
    X. Xu, C. Wang, and G. Tu: J. Less Common Met., 1989, vol. 155, pp. 331-337.CrossRefGoogle Scholar
  18. 18.
    M. K. Pake, J. M. Jang, H. J. Kang, and J. J. Pak: ISIJ Int., 2013, vol. 53, pp. 535-537.CrossRefGoogle Scholar
  19. 19.
    J. S. Abell, I. R. Harris, B. Cockayne,and B. Lent: J. Mater. Sci., 1974, vol. 9, pp. 527-537.CrossRefGoogle Scholar
  20. 20.
    T. I. Mah and M. D. Petry: J. Am. Ceram. Soc., 1992, vol. 75, pp. 2006-2009.CrossRefGoogle Scholar
  21. 21.
    L. Zhang, Y. Ren, H. Duan, W. Yang, and L. Sun: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1809-1825.CrossRefGoogle Scholar
  22. 22.
    B. J. Keene: Int. Mater. Rev., 1988, vol. 33, pp. 1-37.CrossRefGoogle Scholar
  23. 23.
    L. Zhao and V. Sahajwalla: ISIJ Int., 2003, vol. 43, pp. 1-6.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yan Luo
    • 1
  • Ming Li
    • 1
  • Piotr R. Scheller
    • 1
  • Seetharaman Sridhar
    • 2
  • Lifeng Zhang
    • 1
    Email author
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology, BeijingBeijingChina
  2. 2.Department for Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA

Personalised recommendations