Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2354–2361 | Cite as

Experimental Investigation on Metallic Droplet Behavior in Molten BOF Slag

  • Yannan Wang
  • Lingling CaoEmail author
  • Maarten Vanierschot
  • Bart Blanpain
  • Muxing GuoEmail author
Article
  • 57 Downloads

Abstract

In order to better understand the metallic droplet behavior during a slag treatment process, a physical modeling based on the similarity principle was performed in a transparent scaled-down vessel at room temperature. Paraffin oil, 20 wt pct copper sulfate solution, and compressed air were used to simulate the molten slag, metallic droplet, and carrier gas, respectively. The droplets injected into paraffin oil during the experiment were captured by a high speed camera and were analyzed by Image Pro Plus software to obtain the droplet size distribution. The critical droplet size in the physical modeling and slag treatment process is quantitatively correlated. The results show that droplet breakage phenomenon is dominant over its coalescence in the current industrial practice, and droplet breakage is enhanced with increasing gas flow rate and/or lance depth. No significant effect of the nozzle configuration was found on the droplet breakage and coalescence. The droplet size distribution varies with the lance position. Gas flow rate and lance depth are the most important factors for droplet breakage, the extent of which can be reduced through a proper selection of the operational conditions. A linear relationship between the droplet size and the input energy flux is obtained.

Nomenclature

a

Cross-section area of lance (m2)

A

Hamaker constant (around 10−20 J)

d

Droplet diameter (mm)

\( d_{\text{c}} \)

Critical droplet diameter (mm)

\( d_{\text{N}} \)

Normalized droplet diameter

\( \bar{d}_{0} \)

Average value of the initial droplet diameter (mm)

\( \bar{d}_{\text{i}} \)

Average value of the resulting droplet diameter (mm)

\( E_{\text{In}} \)

Input energy flux (kJ m−2 s−1)

\( Fr_{\text{m}} \)

Modified Froude number

h

Film thickness (mm)

\( h_{0} \)

Initial film thickness (mm)

\( h_{c} \)

Critical film thickness (mm)

H

Submerged lance depth (m)

g

Gravitational acceleration (m/s2)

\( L_{\text{X}} \)

Lower limit of a given bin (mm)

\( L_{\text{Y}} \)

Upper limit of a given bin (mm)

\( N_{\text{f}} \)

Normalized frequency (mm−1)

\( N_{\text{XY}} \)

Frequency in a given bin

\( P_{\text{a}} \)

Atmosphere pressure (Pa)

\( Q_{\text{a}} \)

Gas flowrate at pressure \( P_{\text{a}} \) (m3 s−1)

r

Radius of droplet (mm)

\( r_{\text{eq}} ,\;r_{\text{i}} ,\;r_{\text{j}} \)

Equivalent radius, radius of droplet i and j, respectively (mm)

R

Top radius of the physical model (mm)

t

Time (s)

\( t_{\text{i}} \)

Interaction time (s)

u

Gas velocity (m s−1)

V

Approach velocity (m s−1)

We

Weber number

\( We_{\text{c}} \)

Critical Weber number

Greek Symbols

\( \eta \)

Conversion efficiency of kinetic energy

\( \mu \)

Viscosity, (Pa s)

\( \rho \)

Density (kg m−3)

\( \sigma \)

Interfacial tension between paraffin oil and droplet (N m−1)

Subscripts

d

Droplet

g

Gas phase

l

Liquid phase

m

Physical modeling

p

Slag treatment process

Notes

Acknowledgments

The financial support from an IWT project 140514 (Belgium) is highly acknowledged. Yannan Wang would like to give his thanks to the China Scholarship Council (CSC).

References

  1. 1.
    Euroslag: www.euroslag.com. Accessed on April 5, 2019.
  2. 2.
    H. Motz and J. Geiseler: Waste Manage., 2001, vol. 21, pp. 285-293.CrossRefGoogle Scholar
  3. 3.
    H. Shen and E. Forssberg: Waste Manage., 2003, vol. 23, pp. 933-949.CrossRefGoogle Scholar
  4. 4.
    R. Dippenaar: Ironmak. Steelmak., 2005, vol. 32, pp. 35-46.CrossRefGoogle Scholar
  5. 5.
    A.S. Reddy, R.K. Pradhan and S. Chandra: Int. J. Miner. Process., 2006, vol. 79, pp. 98-105.CrossRefGoogle Scholar
  6. 6.
    H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan, and H. Chen: Procedia Environ. Sci., 2012, vol. 16, pp. 791-801.CrossRefGoogle Scholar
  7. 7.
    L.M. Juckes: Miner. Proces. Extrac. Metall., 2003, vol. 112, pp. 177-197.CrossRefGoogle Scholar
  8. 8.
    G. Wang, Y. Wang, and Z. Gao: J. Hazard. Mater., 2010, vol. 184, pp. 555-560.CrossRefGoogle Scholar
  9. 9.
    M. Kühn, P. Drissen, and H. Schrey: 2nd European Slag Conference, Düsseldorf, Germany. 2000, pp. 123–35.Google Scholar
  10. 10.
    J. Sichien: 5th European Slag Conference, Luxembourg. 2007.Google Scholar
  11. 11.
    D. Durinck, F. Engström, S. Arnout, J. Heulens, P.T. Jones, B. Björkman, B. Blanpain, and P. Wollants: Resour. Conserv. Recy., 2008, vol. 52, pp. 1121-1131.CrossRefGoogle Scholar
  12. 12.
    BK Rout, G Brooks, MA Subagyo, S Rhamdhani, Z Li (2016) Metall. Mater. Trans. B 47B:3350-3361.CrossRefGoogle Scholar
  13. 13.
    Q. He and N. Standish: ISIJ Int., 1990, vol. 30, pp. 356-361.CrossRefGoogle Scholar
  14. 14.
    P.K. Iwamasa and R.J. Fruehan: ISIJ Int., 1996, vol. 36, pp. 1319-1327.CrossRefGoogle Scholar
  15. 15.
    Subagyo M, Brooks GA, Coley KS, Irons GA (2003) ISIJ Int. 43:983-989.CrossRefGoogle Scholar
  16. 16.
    GA Brooks, Y Pan, M Subagyo, KS Coley (2005) Metall. Mater. Trans. B 36: 525-535.CrossRefGoogle Scholar
  17. 17.
    A. Warczok and G. Riveros: Miner. Eng., 2007, vol. 20, pp. 34-43.CrossRefGoogle Scholar
  18. 18.
    H Yang, J Wolters, P Pischke, H Soltner, S Eckert, G Natour, J Fröhlich (2017) IOP Conf. Ser 228: 1-11.CrossRefGoogle Scholar
  19. 19.
    V. Singh, J. Kumar, C. Bhanu, S.K. Ajmani, and S.K. Dash: ISIJ Int., 2007, vol. 47, pp, 1605-1612.CrossRefGoogle Scholar
  20. 20.
    J.O. Hinze: AIChE J., 1955, vol. 1, pp. 289-295.CrossRefGoogle Scholar
  21. 21.
    R. Shinnar and J.M. Church: Ind. Eng. Chem., 1960, vol. 52, pp. 253-256.CrossRefGoogle Scholar
  22. 22.
    W Sutherland (1893) Mag. J. Sci. 36:507-531.CrossRefGoogle Scholar
  23. 23.
    M.A. VanEnde, M. Guo, E. Zinngrebe, B. Blanpain, and I-H. Jung: ISIJ Int., 2013, vol. 53, pp. 1974-1982.CrossRefGoogle Scholar
  24. 24.
    H. Luo and H.F. Svendsen: AIChE J., 1996, vol. 42, pp. 1225-1233.CrossRefGoogle Scholar
  25. 25.
    D. Mazumdar, R.I.L. Guthrie, and Y. Sahai: Appl. Math. Modeling, 1993, vol. 17, pp. 255-262.CrossRefGoogle Scholar
  26. 26.
    C. Xing, T. Wang, K. Guo, and J. Wang: AIChE J., 2015, vol. 61, pp. 1391-1403.CrossRefGoogle Scholar
  27. 27.
    A.K. Chesters: Chem. Eng. Res. Des., 1991, vol. 69, pp. 259-270.Google Scholar
  28. 28.
    C. Tsouris and L.L. Tavlarides: AIChE J., 1994, vol. 40, pp. 395-406.CrossRefGoogle Scholar
  29. 29.
    M.P. Schwarz: ISIJ Int., 1991, vol. 31, pp. 947-951.CrossRefGoogle Scholar
  30. 30.
    L.H. Lehrer: I & EC Process Design & Development, 1968, vol. 7, pp. 226-239.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringKU LeuvenLeuvenBelgium
  2. 2.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  3. 3.Mechanical Engineering Technology Cluster TC, Campus Group T LeuvenKU LeuvenLeuvenBelgium

Personalised recommendations