Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2134–2162 | Cite as

A Review on Friction Stir Processing of Titanium Alloy: Characterization, Method, Microstructure, Properties

  • Zihao Ding
  • Qing Fan
  • Liqiang WangEmail author


In the past two decades, friction stir processing (FSP) technology has received considerable attention. FSP can be used to adjust and control the microstructure of materials, including eliminating defects, destroying dendrites and controlling fractions in the second stage, and is therefore widely used in titanium and its alloys for biomedical, aerospace and automotive applications. This article comprehensively reviews the methods of studying FSP, the microstructure evolution of materials and the summary of material properties. It begins with the introduction of the FSW system, characterization, structure and elemental analysis, and simulation and performance testing methods, and then introduces the microstructure evolution mechanism of various titanium materials and discusses in detail the material properties of titanium alloy, namely hardness and wear resistance, elasticity and plasticity, corrosion resistance and biocompatibility. Finally, this review presents unresolved issues and outstanding challenges in FSP technology and reveals the direction of this emerging field of research.



The authors would like to acknowledge the financial support provided by National Science Foundation under Grant Nos. 51674167 and 51831011. The authors sincerely thank Ting Zhang, Song Han and Jingbo Liu from Xi’an University of Architecture and Technology for data analysis of this article.


  1. 1.
    1. L.Q. Wang, W.J. Lu, J. Qin, F. Zhang, and D. Zhang, J. Alloy. Comp., 2009, vol.469, pp.512-518.Google Scholar
  2. 2.
    2. L. Wang, W. Lu, J. Qin, F. Zhang, and D. Zhang, Mater. Sci. Eng.: A 2008, vol. 491, pp.372-377.Google Scholar
  3. 3.
    S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, and L.C. Zhang. J. Alloy. Compd., 2019, vol. 792, pp. 684-693.Google Scholar
  4. 4.
    4. X. Y. Liu, P. K. Chu and C. X. Ding, Mater. Sci. Eng. R Rep. 2004, vol. 47, pp. 49-121.Google Scholar
  5. 5.
    Rabadia C.D, Liu Y.J, Jawed S.F., Wang L., Li Y.H., Zhang X.H., Sercombe T.B. Sun H., and Zhang L.C.: Mater. Des. 2018, vol. 160, pp. 1059-1070.Google Scholar
  6. 6.
    6. Z. Lin, L. Wang, X. Xue, W. Lu, J. Qin, D. Zhang, Mater. Sci. Eng.: C 2013, vol. 3, pp. 4551-4561.Google Scholar
  7. 7.
    7. Rabadia C, Liu Y, Wang L, Sun H, Zhang L, Mater. Des. 2018,vol.154, pp. 228-238.Google Scholar
  8. 8.
    N. Hafeez, S. Liu, E. Lu, L. Wang, R. Liu, W. Lu, and L.-C. Zhang, J. Alloy. Compd., 2019, vol. 790, pp. 117-126.Google Scholar
  9. 9.
    H Gu, ZH Ding, Z Yang, WQ Yu, WJ Zhang, WJ Lu, LC Zhang, KS Wang, LQ Wang, YF Fu, Mater. Des. 2019, vol. 169, p. 107680Google Scholar
  10. 10.
    10. Rajiv S. Mishra and Murray W. Mahoney, Mater. Sci. Forum 2001, vol. 357-359, pp. 507-514.Google Scholar
  11. 11.
    11. R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R Rep. 2005, vol. 50, pp. 1-78.Google Scholar
  12. 12.
    12. Z. Y. Ma, Metall. Mater. Trans. A 2008, vol. 39A, pp. 642-658.Google Scholar
  13. 13.
    13. Y. X. Gan, D. Solomon and M. Reinbolt, Materials 2010, vol. 3, pp. 329-350.Google Scholar
  14. 14.
    14. V. Sharma, U. Prakash and B. V. M. Kumar, J. Mater. Process. Technol. 2015, vol. 224, pp. 117-134.Google Scholar
  15. 15.
    15. A. A. Nia, H. Omidvar and S. H. Nourbakhsh, Mater. Des. 2013, vol. 52, pp. 615-620.Google Scholar
  16. 16.
    16. R. Maurya, B. Kumar, S. Ariharan, J. Ramkumar and K. Balani, Mater. Des. 2016, vol. 98, pp. 155-166.Google Scholar
  17. 17.
    17. H. S. Arora, H. Singh and B. K. Dhindaw, Int. J. Adv. Manuf. Technol. 2012, vol. 61, pp. 1043-1055.Google Scholar
  18. 18.
    R. S. Mishra, Z. Y. Ma and I. Charit, Mater. Sci. Eng. A 2003, vol. 341, pp. 307-310.Google Scholar
  19. 19.
    19. E. D. Nicholas and W. M. Thomas, Int. J. Mater. Prod. Technol. 1998, vol. 13, pp. 45-55.Google Scholar
  20. 20.
    20. V. Sharma, Y. Gupta, B. V. M. Kumar and U. Prakash, Mater. Manuf. Processes 2016, vol. 31, pp. 1384-1392.Google Scholar
  21. 21.
    21. M. Akbari, P. Asadi, P. Zolghadr and A. Khalkhali, Proc. Inst. Mech. Eng. E 2018, vol. 232, pp. 323-337.Google Scholar
  22. 22.
    22. T. Thankachan, K. S. Prakash and V. Kavimani, Mater. Manuf. Processes 2018, vol. 33, pp. 1681-1692.Google Scholar
  23. 23.
    23. S. Mironov, Y. S. Sato and H. Kokawa, J. Mater. Sci. Technol. 2018, vol. 34, pp. 58-72.Google Scholar
  24. 24.
    24. G. K. Padhy, C. S. Wu and S. Gao, J. Mater. Sci. Technol. 2018, vol. 34, pp. 1-38.Google Scholar
  25. 25.
    A. Shamsipur, M.S. Pezeshki, S.A. Behmand, and M. Rezaei: Mater. Res. Express, 2019, vol. 6.Google Scholar
  26. 26.
    26. Y. N. Zhang, X. Cao, S. Larose and P. Wanjara, Can. Metall. Q. 2012, vol. 51, pp. 250-261.Google Scholar
  27. 27.
    27. L. Q. Wang, L. C. Xie, Y. T. Lv, L. C. Zhang, L. Y. Chen, Q. Meng, J. Qu, D. Zhang and W. J. Lu, Acta Mater. 2017, vol. 131, pp. 499-510.Google Scholar
  28. 28.
    28. D. A. Brice, P. Samimi, I. Ghamarian, Y. Liu, M. Y. Mendoza, M. J. Kenney, R. F. Reidy, M. Garcia-Avila and P. C. Collins, J. Alloys Compd. 2017, vol. 718, pp. 22-27.Google Scholar
  29. 29.
    29. H. R. Akramifard, M. Shamanian, M. Sabbaghian and M. Esmailzadeh, Mater. Des. 2014, vol. 54, pp. 838-844.Google Scholar
  30. 30.
    30. H. Izadi, A. Nolting, C. Munro, D. P. Bishop, K. P. Plucknett and A. P. Gerlich, J. Mater. Process. Technol. 2013, vol. 213, pp. 1900-1907.Google Scholar
  31. 31.
    31. Chih-Wei Huang and Jong-Ning Aoh, Materials 2018, vol. 11, p. 599.Google Scholar
  32. 32.
    32. F. Y. Zheng, Y. J. Wu, L. M. Peng, X. W. Li, P. H. Fu and W. J. Ding, J. Magnesium Alloys 2013, vol. 1, pp. 122-127.Google Scholar
  33. 33.
    33. K. Elangovan, V. Balasubramanian and M. Valliappan, Mater. Manuf. Processes 2008, vol. 23, pp. 251-260.Google Scholar
  34. 34.
    34. Yongxian Huang, Tianhao Wang, Weiqiang Guo, Long Wan and Shixiong Lv, Mater. Des. 2014, vol. 59, pp. 274-278.Google Scholar
  35. 35.
    35. Shiyu Niu, Baosheng Wu, Lin Ma, Zan Lv and Dejun Yan, Int. J. Adv. Manuf. Technol. 2018, vol. 97, pp. 2461-2468.Google Scholar
  36. 36.
    36. Liming Ke, Chunping Huang, Li Xing and Kehui Huang, J. Alloys Compd. 2010, vol. 503, pp. 494-499.Google Scholar
  37. 37.
    37. Parviz Asadi, Ghader Faraji and Mohammad K. Besharati, Int. J. Adv. Manuf. Technol. 2010, vol. 51, pp. 247-260.Google Scholar
  38. 38.
    38. Wei Wang, Qing-yu Shi, Peng Liu, Hong-ke Li and Ting Li, J. Mater. Process. Technol. 2009, vol. 209, pp. 2099-2103.Google Scholar
  39. 39.
    39. Z. H. Ding, C. J. Zhang, L. C. Xie, L. C. Zhang, L. Q. Wang and W. J. Lu, Metall. Mater. Trans. A 2016, vol. 47A, pp. 5675-5679.Google Scholar
  40. 40.
    40. L. E. Murr, R. D. Flores, O. V. Flores, J. C. McClure, G. Liu and D. Brown, Mater. Res. Innovations 1998, vol. 1, pp. 211-223.Google Scholar
  41. 41.
    E.T. Akinlabi and S.A. Akinlabi: Material Characterisation of Friction Stir Processed 6082-T6 Aluminium Alloy, 2013.Google Scholar
  42. 42.
    42. S. Agarwal, C. L. Briant, L. G. Hector and Y. L. Chen, J. Mater. Eng. Perform. 2007, vol. 16, pp. 391-403.Google Scholar
  43. 43.
    43. Q. Liu, L. M. Ke, F. C. Liu, C. P. Huang and L. Xing, Mater. Des. 2013, vol. 45, pp. 343-348.Google Scholar
  44. 44.
    44. M. V. Kovalchuk, A. Yu Kazimirov and S. I. Zheludeva, Nucl. Instrum. Methods Phys. Res. B 1995, vol. 101, pp. 435-452.Google Scholar
  45. 45.
    45. H. Fujii, Y. F. Sun, K. Inada, Y. S. Ji, Y. Yokoyama, H. Kimura and A. Inoue, Mater. Trans. 2011, vol. 52, pp. 1634-1640.Google Scholar
  46. 46.
    46. Y. R. Wei and Z. H. Li, Instrum. Sci. Technol. 2016, vol. 44, pp. 521-536.Google Scholar
  47. 47.
    47. Jingpeng Li, Aiquan Jiao, Shuo Chen, Zhengzong Wu, Enbo Xu and Zhengyu Jin, J. Mol. Struct. 2018, vol. 1165, pp. 391-400.Google Scholar
  48. 48.
    M. E. Boiko, M. D. Sharkov, A. M. Boiko, S. G. Konnikov, A. V. Bobyl and N. S. Budkina, Tech. Phys. 2015, vol. 60, pp. 1575-1600.Google Scholar
  49. 49.
    49. L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louer and P. Scardi, J. Appl. Crystallogr. 1999, vol. 32, pp. 36-50.Google Scholar
  50. 50.
    Q.Q. Wang, M.Y. Zhu, B Dai, and J Zang: J. Catal. Sci. Technol. 2019, vol. 9, pp. 981-991.Google Scholar
  51. 51.
    51. F. J. Grunthaner and P. J. Grunthaner, J. Electrochem. Soc. 1988, vol. 135, pp. C136-C136.Google Scholar
  52. 52.
    52. M. J. Cristobal, D. Gesto, P. Minino, G. Pena, P. Rey and D. Verdera, Surf. Interface Anal. 2012, vol. 44, pp. 1030-1034.Google Scholar
  53. 53.
    53. S. M. Mousavizade, M. Pouranvari, F. M. Ghaini, H. Fujii and Y. F. Sun, J. Alloys Compd. 2016, vol. 685, pp. 806-811.Google Scholar
  54. 54.
    H. Eskandari, R. Taheri and F. Khodabakhshi, Mater. Sci. Eng. A 2016, vol. 660, pp. 84-96.Google Scholar
  55. 55.
    55. J. R. Pratt, J. A. Kramar, D. B. Newell and D. T. Smith, Meas. Sci. Technol. 2005, vol. 16, pp. 2129-2137.Google Scholar
  56. 56.
    A. Chabok and K. Dehghani, Mater. Sci. Eng. A 2010, vol. 528, pp. 309-313.Google Scholar
  57. 57.
    57. J. Sherma, J. AOAC Int. 2005, vol. 88, pp. 133A-140A.Google Scholar
  58. 58.
    58. D. Nam, A. S. Opanasyuk, P. V. Koval, A. G. Ponomarev, A. R. Jeong, G. Y. Kim, W. Jo and H. Cheong, Thin Solid Films 2014, vol. 562, pp. 109-113.Google Scholar
  59. 59.
    59. T. Slater, Y. Q. Chen, G. Auton, N. Zaluzec and S. Haigh, Microsc. Microanal. 2016, vol. 22, pp. 440-447.Google Scholar
  60. 60.
    E.B. Pretorius, H.G. Oltmann, and B.T. Schart: in Aistech 2013: Proceedings Of the Iron & Steel Technology Conference, vols. I and Ii, K.D. Hickey and K.J. McGhee, eds., 2013, pp 993–1026.Google Scholar
  61. 61.
    61. C. I. Chang, C. J. Lee and J. C. Huang, Scr. Mater. 2004, vol. 51, pp. 509-514.Google Scholar
  62. 62.
    62. F. J. Humphreys, J. Mater. Sci. 2001, vol. 36, pp. 3833-3854.Google Scholar
  63. 63.
    M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Mater. Sci. Eng. A 2010, vol. 527, pp. 2738-2746.Google Scholar
  64. 64.
    64. N. Lebaal, D. Chamoret, D. Schlegel and M. Folea, Mater. Phys. Mech. 2017, vol. 32, pp. 14-20.Google Scholar
  65. 65.
    65. James R. Rule and John C. Lippold, Metall. Mater. Trans. A 2013, vol. 44, pp. 3649-3663.Google Scholar
  66. 66.
    S.J. Norton and J.C. Lippold: ASM International, p. 287.Google Scholar
  67. 67.
    F. Krumphals, Z. Gao, H. Zamani, S. Mitsche, N. Enzinger, and C. Sommitsch: in Physical and Numerical Simulation Of Materials Processing Vii, L.P. Karjalainen, D.A. Porter, and S.A. Jarvenpaa, eds., 2013, p. 590.Google Scholar
  68. 68.
    68. S. S. Babu, J. Livingston and J. C. Lippold, Metall. Mater. Trans. A 2013, vol. 44, pp. 3577-3591.Google Scholar
  69. 69.
    69. Abhinand, Mater. Today 2017, vol. 4, pp. 11265-11269.Google Scholar
  70. 70.
    70. D. Kim, H. Badarinarayan, I. Ryu, J. H. Kim, C. Kim, K. Okamoto, R. H. Wagoner and K. Chung, Int. J. Mater. Form. 2009, vol. 2, pp. 383-386.Google Scholar
  71. 71.
    71. Byung-Min Kim, Chan-Joo Lee and Jung-Min Lee, J. Mech. Sci. Technol. 2010, vol. 24, pp. 73-76.Google Scholar
  72. 72.
    72. Linmao Qian, Ming Li, Zhongrong Zhou, Hui Yang and Xinyu Shi, Surf. Coat. Technol. 2005, vol. 195, pp. 264-271.Google Scholar
  73. 73.
    73. S. Suresh, T. G. Nieh and B. W. Choi, Scr. Mater. 1999, vol. 41, pp. 951-957.Google Scholar
  74. 74.
    74. K. P. Rao, G. D. J. Ram and B. E. Stucker, Mater. Des. 2010, vol. 31, pp. 1576-1580.Google Scholar
  75. 75.
    75. H. S. Arora, H. Singh and B. K. Dhindaw, Corrosion 2013, vol. 69, pp. 122-135.Google Scholar
  76. 76.
    X.F. Guo, B. Xu, and Y. Wang: in Material Design, Processing and Applications, Parts 1–4, X.H. Liu, K.F. Zhang, and M.Z. Li, eds., 2013, pp. 3474–77.Google Scholar
  77. 77.
    77. C. J. Zhang, Z. H. Ding, L. C. Xie, L. C. Zhang, L. Z. Wu, Y. F. Fu, L. Q. Wang and W. J. Lu, Appl. Surf. Sci. 2017, vol. 423, pp. 331-339.Google Scholar
  78. 78.
    78. G. M. Reddy and K. S. Rao, Trans. Indian Inst. Met. 2010, vol. 63, pp. 793-798.Google Scholar
  79. 79.
    79. K. Selvam, A. Ayyagari, H. S. Grewal, S. Mukherjee and H. S. Arora, Wear 2017, vol. 386-387, pp. 129-138.Google Scholar
  80. 80.
    K. Dudzik and A. Charchalis: in Mechatronic Systems And Materials V, Z. Gosiewski and Z. Kulesza, eds., 2013, pp. 412–17.Google Scholar
  81. 81.
    81. J. Huang, Z. Li, B. Y. Liaw and J. B. Zhang, J. Power Sources 2016, vol. 309, pp. 82-98.Google Scholar
  82. 82.
    F. Traub, J. Hansen, W. Ackermann, T. Weiland, and Ieee: in 2013 Ieee International Symposium on Electromagnetic Compatibility, 2013, pp. 287–93.Google Scholar
  83. 83.
    83. G. R. Argade, K. Kandasamy, S. K. Panigrahi and R. S. Mishra, Corros. Sci. 2012, vol. 58, pp. 321-326.Google Scholar
  84. 84.
    84. I. Khan, G. Hussain, M. Tariq and M. Ilyas, Int. J. Adv. Manuf. Technol. 2018, vol. 96, pp. 3651-3663.Google Scholar
  85. 85.
    C.Y. Zhu, Y.T. Lv, C. Qian, H.X. Qian, T. Jiao, L.Q. Wang, and F.Q. Zhang: Sci. Rep., 2016, vol. 6.Google Scholar
  86. 86.
    86. Y. H. Sohn, T. Patterson, C. Hofmeister, C. Kammerer, W. Mohr, M. Van Den Bergh, M. Shaeffer, J. Seaman and K. Cho, Jom 2012, vol. 64, pp. 234-238.Google Scholar
  87. 87.
    87. G. Liu, R. Xin, J. Li, D. Liu and Q. Liu, Sci. Technol. Weld. Joi. 2015, vol. 20, pp. 378-384.Google Scholar
  88. 88.
    G. M. Xie, H. B. Cui, Z. A. Luo, R. D. K. Misra and G. D. Wang, Mater. Sci. Eng. A 2017, vol. 704, pp. 311-321.Google Scholar
  89. 89.
    K. Oh-Ishi, A.P. Zhilyaev, S. Swaminathan, C.B. Fuller, B. London, M.W. Mahoney, and T.R. McNelley: Stir Zone Temperatures During Friction Stir Processing, 2007.Google Scholar
  90. 90.
    90. B. Mansoor and A. K. Ghosh, Acta Mater. 2012, vol. 60, pp. 5079-5088.Google Scholar
  91. 91.
    D. Yadav and R. Bauri, Mater. Sci. Eng. A 2012, vol. 539, pp. 85-92.Google Scholar
  92. 92.
    92. J. Y. Han, J. Chen, L. M. Peng, F. Y. Zheng, W. Rong, Y. J. Wu and W. J. Ding, Mater. Des. 2016, vol. 94, pp. 186-194.Google Scholar
  93. 93.
    O. M. Barabash, R. I. Barabash, G. E. Ice, Z. L. Feng and D. Gandy, Mater. Sci. Eng. A 2009, vol. 524, pp. 10-19.Google Scholar
  94. 94.
    A. Shamsipur, S.F. Kashani-Bozorg and A. Zarei-Hanzaki, Surf. Coat. Technol. 2011, vol. 206, pp. 1372-1381.Google Scholar
  95. 95.
    S. Bahl, P. L. Nithilaksh, S. Suwas, S.V. Kailas and K. Chatterjee, J. Mater. Eng. Perform. 2017, vol. 26, pp. 4206-4216.Google Scholar
  96. 96.
    96. Zhipeng Zeng, Yanshu Zhang and Stefan Jonsson, Mater. Des. 2009, vol. 30, pp. 3105-3111.Google Scholar
  97. 97.
    97. N. Dudova, A. Belyakov, T. Sakai and R. Kaibyshev, Acta Mater. 2010, vol. 58, pp. 3624-3632.Google Scholar
  98. 98.
    98. Y. J. Chen, Y. J. Li, J. C. Walmsley, S. Dumoulin, S. S. Gireesh, S. Armada, P. C. Skaret and H. J. Roven, Scr. Mater. 2011, vol. 64, pp. 904-907.Google Scholar
  99. 99.
    99. Takashi Saito, Tadahiko Furuta, Jung-Hwan Hwang, Shigeru Kuramoto, Kazuaki Nishino, Nobuaki Suzuki, Rong Chen, Akira Yamada, Kazuhiko Ito, Yoshiki Seno, Takamasa Nonaka, Hideaki Ikehata, Naoyuki Nagasako, Chihiro Iwamoto, Yuuichi Ikuhara and Taketo Sakuma, Science 2003, vol. 300, p. 464.Google Scholar
  100. 100.
    100. L. Q. Wang, J. Qu, L. Y. Chen, Q. Meng, L. C. Zhang, J. N. Qin, D. Zhang and W. J. Lu, Metall. Mater. Trans. A 2015, vol. 46A, pp. 4813-4818.Google Scholar
  101. 101.
    101. H. M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 1996, vol. 32, pp. 409-417.Google Scholar
  102. 102.
    102. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J. P. Kruth, Acta Mater. 2010, vol. 58, pp. 3303-3312.Google Scholar
  103. 103.
    103. S. Gorsse and D. B. Miracle, Acta Mater. 2003, vol. 51, pp. 2427-2442.Google Scholar
  104. 104.
    104. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee and Y. F. Missirlis, Biomaterials 2001, vol. 22, pp. 1241-1251.Google Scholar
  105. 105.
    T. Seshacharyulu, S. C. Medeiros, W. G. Frazier and Y. Prasad, Mater. Sci. Eng. A 2000, vol. 284, pp. 184-194.Google Scholar
  106. 106.
    106. A. L. Pilchak and J. C. Williams, Metall. Mater. Trans. A 2011, vol. 42, pp. 773-794.Google Scholar
  107. 107.
    Jianqing Su, Jiye Wang, Rajiv S. Mishra, Ray Xu and John A. Baumann, Mater. Sci. Eng. A 2013, vol. 573, pp. 67-74.Google Scholar
  108. 108.
    108. Bo Li, Yifu Shen, Weiye Hu and Lei Luo, Surf. Coat. Technol. 2014, vol. 239, pp. 160-170.Google Scholar
  109. 109.
    S. Palanivel, A. Arora, K. J. Doherty and R. S. Mishra, Mater. Sci. Eng. A 2016, vol. 678, pp. 308-314.Google Scholar
  110. 110.
    M. C. Lorenzo-Martin and O. O. Ajayi, J. Tribol. 2014, vol. 136, p. 031101.Google Scholar
  111. 111.
    A Shamsipur, SF Kashani-Bozorg and A Zarei-Hanzaki, Surf. Coat. Technol. 2013, vol. 218, pp. 62-70.Google Scholar
  112. 112.
    112. S. Mridha, J. Mater. Process. Technol. 2005, vol. 168, pp. 471-477.Google Scholar
  113. 113.
    113. M. S. F. Lima, F. Folio and S. Mischler, Surf. Coat. Technol. 2005, vol. 199, pp. 83-91.Google Scholar
  114. 114.
    J-J Oak and A Inoue, Mater. Sci. Eng. A 2007, vol. 449-451, pp. 220-224.Google Scholar
  115. 115.
    R. W. Martin, S. Sathish, and K. V. Jata: in Review Of Progress in Quantitative Nondestructive Evaluation, vols. 27a and 27b, D.O. Thompson and D.E. Chimenti, eds., 2008, p. 1050.Google Scholar
  116. 116.
    116. K. Selvam, A. Prakash, H. S. Grewal and H. S. Arora, Mater. Chem. Phys 2017, vol. 197, pp. 200-207.Google Scholar
  117. 117.
    117. Y. T. Lv, Z. H. Ding, J. Xue, G. Sha, E. Y. Lu, L. Q. Wang, W. J. Lu, C. J. Su and L. C. Zhang, Scr. Mater. 2018, vol. 157, pp. 142-147.Google Scholar
  118. 118.
    Wenjing Zhang, Hua Ding, Minghui Cai, Wenjing Yang and Jizhong Li, Mater. Sci. Eng. A 2018, vol. 727, pp. 90-96.Google Scholar
  119. 119.
    119. Y. G. Ko, C. S. Lee, D. H. Shin and S. L. Semiatin, Metall. Mater. Trans. A 2006, vol. 37, p. 381.Google Scholar
  120. 120.
    YG Ko, WG Kim, CS Lee and DH Shin, Mater. Sci. Eng. A 2005, vol. 410-411, pp. 156-159.Google Scholar
  121. 121.
    121. Jie Fu, Hua Ding, Yi Huang, Wenjing Zhang and Terence G. Langdon, J. Mater. Res. Technol. 2015, vol. 4, pp. 2-7.Google Scholar
  122. 122.
    122. C. M. Cepeda-Jiménez, J. M. García-Infanta, O. A. Ruano and F. Carreño, J. Alloys Compd. 2013, vol. 546, pp. 253-259.Google Scholar
  123. 123.
    123. Q. Yang, B. L. Xiao and Z. Y. Ma, J. Alloys Compd. 2013, vol. 551, pp. 61-66.Google Scholar
  124. 124.
    124. F. C. Liu, Z. Y. Ma and F. C. Zhang, J. Mater. Sci. Technol. 2012, vol. 28, pp. 1025-1030.Google Scholar
  125. 125.
    S. Malopheyev, S. Mironov, I. Vysotskiy and R. Kaibyshev, Mater. Sci. Eng. A 2016, vol. 649, pp. 85-92.Google Scholar
  126. 126.
    126. Hiroaki Matsumoto, Kazuki Yoshida, San-Hak Lee, Yoshiki Ono and Akihiko Chiba, Mater. Lett. 2013, vol. 98, pp. 209-212.Google Scholar
  127. 127.
    Tuoyang Zhang, Yong Liu, Daniel G. Sanders, Bin Liu, Weidong Zhang and Canxu Zhou, Mater. Sci. Eng. A 2014, vol. 608, pp. 265-272.Google Scholar
  128. 128.
    C Leyens and M Peters: Titanium and Titanium Alloys: Fundamentals and Applications. Wiley, New York, 2003.Google Scholar
  129. 129.
    129. S. Y. Yu, J. R. Scully and C. M. Vitus, J. Electrochem. Soc. 2001, vol. 148, pp. B68-B78.Google Scholar
  130. 130.
    G. H. Cao, D. T. Zhang, W. W. Zhang and W. Zhang, Materials 2016, vol. 9, p. 542.Google Scholar
  131. 131.
    A Fattah-Alhosseini, FR Attarzadeh and M Vakili-Azghandi, Metall. Mater. Trans. A 2017, vol. 48, pp. 403-411.Google Scholar
  132. 132.
    132. H. Garbacz, M. Pisarek and K. J. Kurzydłowski, Biomol. Eng. 2007, vol. 24, pp. 559-563.Google Scholar
  133. 133.
    133. E. K. Sevidova and A. A. Simonova, Surf. Eng. Appl. Electrochem. 2011, vol. 47, p. 162.Google Scholar
  134. 134.
    HS Kim, SJ Yoo, JW Ahn, DH Kim and WJ Kim, Mater. Sci. Eng. A 2011, vol. 528, pp. 8479-8485.Google Scholar
  135. 135.
    135. Arash Fattah-alhosseini, Mojtaba Vakili-Azghandi, Mohsen Sheikhi and Mohsen K. Keshavarz, J. Alloys Compd. 2017, vol. 704, pp. 499-508.Google Scholar
  136. 136.
    136. S. P. Harrington and T. M. Devine, J. Electrochem. Soc. 2008, vol. 155, pp. C381-C386.Google Scholar
  137. 137.
    137. M. Atapour, A. Pilchak, G. S. Frankel and J. C. Williams, Corros. Sci. 2010, vol. 52, pp. 3062-3069.Google Scholar
  138. 138.
    138. Masoud Rezaei, Elnaz Tamjid and Ali Dinari, Sci. Rep. 2017, vol. 7, p. 12965.Google Scholar
  139. 139.
    139. C. Y. Zhu, Y. T. Lv, C. Qian, Z. H. Ding, T. Jiao, X. Y. Gu, E. Y. Lu, L. Q. Wang and F. Q. Zhang, Int. J. Nanomedicine 2018, vol. 13, pp. 1881-1898.Google Scholar
  140. 140.
    140. Wei Liu, Shifeng Liu, and Liqiang Wang, Coatings 2019, vol. 9, pp. 249-272.Google Scholar
  141. 141.
    141. Yiqiang Yu, Guodong Jin, Yang Xue, Donghui Wang, Xuanyong Liu and Jiao Sun, Acta Biomater. 2017, vol. 49, pp. 590-603.Google Scholar
  142. 142.
    K Nakashima, X Zhou, G Kunkel, Z Zhang, JM Deng, RR Behringer and B de Crombrugghe, Cell 2002, vol. 108, pp. 17-29Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Metal Matrix Composites, School of Material Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.Department of Pediatric OrthopaedicsXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiP.R. China

Personalised recommendations