Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2121–2133 | Cite as

Introducing the Planar Laser-Induced Fluorescence Technique (PLIF) to Measure Mixing Time in Gas-Stirred Ladles

  • Luis E. Jardón-Pérez
  • Adrian Amaro-Villeda
  • Carlos González-Rivera
  • Gerardo Trápaga
  • A. N. Conejo
  • Marco A. Ramírez-ArgáezEmail author
Article
  • 67 Downloads

Abstract

The planar laser-induced fluorescence (PLIF) technique was implemented to measure mixing time in a 1/17 water model of a 200-ton ladle furnace. The results were compared to those obtained using the conventional method of pH probes. PLIF determinations were done at two different planes, and pH probe determinations were performed at two different locations. The results suggest that mixing times measured by PLIF are similar to those obtained under optimal conditions by the pH probe and that PLIF technique is more accurate and less sensitive to the location of the measurement than the pH probe method. In addition, the particle image velocimetry (PIV) technique was used to measure the effect of the immersed probe on the fluid-dynamic structure of the system. The presence of the probe affects greatly fluid dynamics and consequently the mixing behavior, which could explain the differences found in its mixing time measurements at different probe locations. This study shows the feasibility of the PLIF technique used to measure mixing time in physical models of gas-stirred ladles; it is not intrusive and allows the visualization of the mixing phenomena in a complete plane of the system.

Notes

Acknowledgments

The authors thank DGAPA-UNAM for the financial support through the Project IN115619. Luis Enrique Jardón-Pérez, CVU 624968, as a student registered in the Doctoral Program in Chemical Engineering at the Universidad Nacional Autónoma de México (UNAM), thanks CONACYT for the financial support through a Ph.D. scholarship.

References

  1. 1.
    1.E. L. Paul, V. A. Atiemo-Obeng, S. M. Kresta: Handbook of industrial mixing: science and practice, 1st ed., Wiley, Hoboken, 2004, pp. 164-176.Google Scholar
  2. 2.
    2.G. Ascanio: Chin. J. Chem. Eng., 2015, vol. 23, pp. 1065-1073.CrossRefGoogle Scholar
  3. 3.
    L. E. JardónPérez, A. Amaro-Villeda, A. N. Conejo, C. González-Rivera, M. A. Ramírez-Argáez: Mater. Manuf. Process., 2018, vol. 33, pp. 882-890.CrossRefGoogle Scholar
  4. 4.
    4.D. Mazumdar, P. Dhandapani, R. Sarvanakumar: ISIJ Int., 2017, vol. 57, pp. 286-295.CrossRefGoogle Scholar
  5. 5.
    5.Y. Liu, M. Ersson, H. Liu, P. G. Jönsson, Y. Gan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 555-577.CrossRefGoogle Scholar
  6. 6.
    6.R. P. Nunes, J. A. M. Pereira, A. C. F. Vilela, F. T. V. Der Laan: J. Eng. Sci. Technol., 2007, vol. 2, pp. 139-150.Google Scholar
  7. 7.
    K. Michalek, K. Gryc, J. Morávka: Metalurgija Zagreb, Croatia, 2009, vol. 48, pp. 215-218.Google Scholar
  8. 8.
    8.D. Mazumdar, R. I. Guthrie: ISIJ Int., 2005, vol. 35, pp. 1-20.CrossRefGoogle Scholar
  9. 9.
    9.M. Madan, D. Satish, D. Mazumdar: ISIJ Int., 2005, vol. 45, pp. 677-685.CrossRefGoogle Scholar
  10. 10.
    10.J. Mandal, S. Patil, M. Madan, D. Mazumdar: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 479-487.CrossRefGoogle Scholar
  11. 11.
    11.C. A. Llanos, S. Garcia, J. A. Ramos-Banderas, J. D. J. Barreto, G. Solorio: ISIJ Int., 2010, vol. 50, pp. 396-402.CrossRefGoogle Scholar
  12. 12.
    H. Y. Tang, J. S. Li, C. H. Xie, S. F. Yang, K. M. Sun, D. S. Wen: Int. J. Miner. Metall. Mater., 2009, vol. 16, pp. 383-386.CrossRefGoogle Scholar
  13. 13.
    13.R. González‐Bernal, G. Solorio‐Diaz, A. Ramos‐Banderas, E. Torres‐Alonso, C. A. Hernández‐Bocanegra, R. Zenit: Steel Res. Int., 2018, vol. 89, pp. 1700281.CrossRefGoogle Scholar
  14. 14.
    14.A. N. Conejo, S. Kitamura, N. Maruoka, S. J. Kim: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 914-923.CrossRefGoogle Scholar
  15. 15.
    15.J. P. Crimaldi: Exp. Fluids, 2008, vol. 44, pp. 851-863.CrossRefGoogle Scholar
  16. 16.
    16.M. M. Alvarez, P. E. Arratia, F. J. Muzzio: Can. J. Chem. Eng., 2002, vol. 80, pp. 546-557.CrossRefGoogle Scholar
  17. 17.
    17.J. F. Hall, M. Barigou, M. J. Simmons, E. H. Stitt: Ind. Eng. Chem. Res., 2004, vol. 43, pp. 4149-4158.CrossRefGoogle Scholar
  18. 18.
    18.M. J. H. Simmons, H. Zhu, W. Bujalski, C. J. Hewitt, A. W. Nienow: Chem. Eng. Res. Des., 2007, vol. 85, pp. 551-559.CrossRefGoogle Scholar
  19. 19.
    19.R. Zadghaffari, J. S. Moghaddas, J. Revstedt: Comput. Chem. Eng., 2009, vol. 33, pp. 1240-1246.CrossRefGoogle Scholar
  20. 20.
    20.Y. Hu, Z. Liu, J. Yang, Y. Jin, Y. Cheng: Chem. Eng. Sci., 2010, vol. 65, pp. 4511-4518.CrossRefGoogle Scholar
  21. 21.
    21.Y. Hu, W. Wang, T. Shao, J. Yang, Y. Cheng: Chem. Eng. Res. Des., 2012, vol. 90, pp. 524-533.CrossRefGoogle Scholar
  22. 22.
    A. Busciglio, F. Grisafi, F. Scargiali, A. Brucato: Chem. Eng. J. Amsterdam Neth., 2014, vol. 254, pp. 210-219.Google Scholar
  23. 23.
    Z. Trad, J. P. Fontaine, C. Larroche, C. Vial: Chem. Eng. J. Amsterdam Neth., 2017, vol. 329, pp. 142-155.Google Scholar
  24. 24.
    24.P. Luo, Y. Cheng, Z. Wang, Y. Jin, W. Yang: Ind. Eng. Chem. Res., 2006, vol. 45, pp. 863-870.CrossRefGoogle Scholar
  25. 25.
    P. Luo, H. Jia, C. Xin, G. Xiang, Z. Jiao, H. Wu: Chem. Eng. J. Amsterdam Neth., 2013, vol. 228, pp. 554-564.Google Scholar
  26. 26.
    26.G. Pan, H. Meng: AIChE J., 2001, vol. 47, pp. 2653-2665.CrossRefGoogle Scholar
  27. 27.
    27.M. Hoffmann, M. Schlüter, N. Räbiger: Chem. Eng. Sci., 2006, vol. 61, pp. 2968-2976.CrossRefGoogle Scholar
  28. 28.
    28.X. Li, Z. Mi, S. Tan, X. Wang, R. Wang, H. Ding: Prog. Nucl. Energy, 2019, vol. 110, pp. 90-102.CrossRefGoogle Scholar
  29. 29.
    J. W. Zhang, S. F. Liu, C. Cheng, W. F. Li, X. L. Xu, H. F. Liu, F. C. Wang: Chem. Eng. J. Amsterdam Neth., 2019, vol. 358, pp. 1561-1573.Google Scholar
  30. 30.
    30.R. Koitzsch, H. J. Odenthal, H. Pfeifer: Steel Res. Int., 2007, vol. 78, pp. 473-481.CrossRefGoogle Scholar
  31. 31.
    31.A. M. Amaro-Villeda, M. A. Ramirez-Argaez, A. N. Conejo: ISIJ Int., 2014, vol. 54, pp. 1-8.CrossRefGoogle Scholar
  32. 32.
    C. P. Ortiz-Olvera: U. N. A. M., Ciudad de México, Bachelor Thesis, 2018.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Luis E. Jardón-Pérez
    • 1
  • Adrian Amaro-Villeda
    • 1
  • Carlos González-Rivera
    • 1
  • Gerardo Trápaga
    • 2
  • A. N. Conejo
    • 3
    • 4
  • Marco A. Ramírez-Argáez
    • 1
    Email author
  1. 1.Metallurgical Engineering DepartmentUniversidad Nacional Autónoma de MéxicoCiudad de MexicoMexico
  2. 2.CIATEQQuerétaroMexico
  3. 3.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology Beijing (USTB)BeijingPeople’s Republic of China
  4. 4.Ferrous Metallurgy Research Institute (FeMRI)MoreliaMexico

Personalised recommendations