Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2389–2402 | Cite as

Influence of the Carrier Gas Species on CaO-Gas Mixed Injection in the EAF Steelmaking Process

  • Xuetao Wu
  • Rong ZhuEmail author
  • Guangsheng WeiEmail author
  • Kai Dong
Article
  • 63 Downloads

Abstract

In the process of electric arc furnace (EAF) steelmaking, usually the lime powder is sprayed into the molten pool with air as carrier gas to reduce costs. However, because of the nitrogen content requirements in the steel, oxygen or oxygen to mix carbon dioxide was substituted as the carrier gas for the lime powder injection. Lime injection with a burner mode has been reported to promote 100 pct lime injection in the EAF and faster dissolution of lime, but few studies have been made on the effect of the carrier gas on lime powder injection. In this study, four different kinds of carrier gas were used to investigate the influence of carrier gas on lime powder injection in EAF steelmaking. In this study, a CFD model based on the discrete particle model and eddy-dissipation concept model was carried out to investigate the influence of carrier gas species on the CaO-gas mixed injection in EAF steelmaking. The interaction between carrier gas and particles was analyzed, and the influences of carrier gas on the shrouding CH4 were also analyzed. Results show that the decrease of CO2 content in the main carrier gas provides better efficiency of the shrouding combustion and more uniform particle distribution.

Notes

Acknowledgments

The authors appreciate the support from the National Natural Science of China (Nos. 51604022 and 51734003).

References

  1. 1.
    M. Kishida, Y. Nishio, H. Maeda and N. Kimurta: Tetsu-to-Hagané, 1966, vol. 52, pp.1481-1483.CrossRefGoogle Scholar
  2. 2.
    H. Nashiwa, S. Yamaguchi, M. Sato, K. Ieda, M. Ishikawa and Y. Ohkita: Tetsu-to-Hagané, 1982, vol. 68, S203.Google Scholar
  3. 3.
    K. Taoka, T. Imai, M. Kuga, R. Tachibana, M. Ohnishi and J. Nagai: Kawasaki Steel Giho, 1983, vol. 15, pp.120.Google Scholar
  4. 4.
    Liu Y, Long C J, Zhan D P, Zhang H S and Jiang Z H: Steelmaking. 2009, vol. 03, pp.1-4.Google Scholar
  5. 5.
    L. R. Farias,G. A. Irons: Metallurgical Transactions B, 1985, vol. 16, pp. 211-225.CrossRefGoogle Scholar
  6. 6.
    L. Wolfe, J.P. Massin, T. Hunturk, and W. Ripamonti: SCANMET, 2008, 3: 3rd.Google Scholar
  7. 7.
    T. Okuno, Md. A. Uddin, Y. Kato, S.B. Lee and Y.H. Kim: ISIJ International, 2017, vol. 57, pp. 1902-1910.CrossRefGoogle Scholar
  8. 8.
    Miyata M, Higuchi Y: ISIJ International, 2017, vol. 57, pp. 1742-1750.CrossRefGoogle Scholar
  9. 9.
    Yuu S: ASME-FED, 1991, 121:3.Google Scholar
  10. 10.
    Ohguchi S, Robertson D. G. C: Ironmaking and Steelmaking, 1984, vol. 11, pp. 262-273.Google Scholar
  11. 11.
    KIMURA E: Transactions of the Iron & Steel Institute of Japan, 1983, vol. 23, pp. 522-529.CrossRefGoogle Scholar
  12. 12.
    Numata M, Higuchi Y: ISIJ international, 2012, vol. 52, pp. 2019-2025.CrossRefGoogle Scholar
  13. 13.
    R. Shiba, Md. A. Uddin, Y. Kato and S. Kitamura: ISIJ International, 2014, vol. 54, pp. 2754-2760.CrossRefGoogle Scholar
  14. 14.
    S. Horiuchi, Md. A. Uddin, Y. Kato, Y. Takahashi, and Y. Uchida: ISIJ International, 2014, vol. 54, pp. 82-86.CrossRefGoogle Scholar
  15. 15.
    Wei G S, Zhu R, Cheng T, Dong K, Yang L Z, Tang T P, Wu X T: ISIJ International, 2018, vol. 58, pp. 842-851.CrossRefGoogle Scholar
  16. 16.
    Magnussen B F, Hjertager B H: Combustion & Flame., 1977, vol. 16, pp. 719-729.CrossRefGoogle Scholar
  17. 17.
    A. Mardani and S. Tabejama: Int J Hydrogen Energy., 2010, vol. 35, pp. 11324-11331.CrossRefGoogle Scholar
  18. 18.
    Alam M, Naser J, Brooks Gand Fontana A: Metallurgical and Materials Transactions B, 2010, vol. 41, pp.1354-1367.CrossRefGoogle Scholar
  19. 19.
    Gidaspow D: Continuum & Kinetic Theory Description, 1994, vol.95, pp.1-29.Google Scholar
  20. 20.
    C.Y. Wen, Y.H. Yu: Chem. Eng. Prog. Symp. Ser., 1966, vol. 62, pp.100-111.Google Scholar
  21. 21.
    S. Ergun: Chem. Eng. Prog., 1952, vol. 48, pp. 89-94.Google Scholar
  22. 22.
    B. Lu, W. Wang, J. Li: Chem. Eng. Sci., 2011, vol. 66, pp.4624-4635.CrossRefGoogle Scholar
  23. 23.
    Papamoschou D, Roshko A: J. Fluid Mech., 1988, vol. 197, pp. 453-477.CrossRefGoogle Scholar
  24. 24.
    Hirt C W, Nichols B D: Journal of computational physics, 1981, vol. 39, pp. 201-225.CrossRefGoogle Scholar
  25. 25.
    Mardani A, Tabejamaat S, Ghamari M: Combustion Theory and Modelling, 2010, vol.14, pp. 747-774.CrossRefGoogle Scholar
  26. 26.
    Christo F C, Dally B B: Combustion and flame, 2005, vol. 142, pp. 117-129.CrossRefGoogle Scholar
  27. 27.
    Launder B E, Spalding D B: Lectures in Mathematical Models of Turbulence. Academic Press, Cambridge, 1972.Google Scholar
  28. 28.
    Wei G S, Zhu R, Wu X T, Yang L Z, Dong K, Cheng T and Tang T P: Metallurgical & Materials Transactions B, 2018, vol. 49, pp. 1405-1420.CrossRefGoogle Scholar
  29. 29.
    Glarborg P, Bentzen L L B: Energy & Fuels, 2007, vol. 22, pp. 291-296.CrossRefGoogle Scholar
  30. 30.
    Zhang J, Mi J, Li P, Wang F and Dally BB: Energy & Fuels, 2015, vol. 29, pp. 4576-4585.CrossRefGoogle Scholar
  31. 31.
    Zhao R, Liu H, Zhong X J, Wang Z J, Hu H and Qiu J R: Fuel Processing Technology, 2011, vol. 92, pp. 939-945.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.Beijing Key Laboratory of the Research Center of Special Melting and Preparation of High-End Metal MaterialsUniversity of Science and Technology BeijingBeijingP.R. China

Personalised recommendations