Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2296–2303 | Cite as

Reduction Mechanism of Iron Oxide Briquettes by Carbonaceous Materials Extracted from Blast Furnace Dust

  • Yang Li
  • Jianliang Zhang
  • Zhengjian LiuEmail author
  • Guilin Wang
  • Shiqin Li
  • Rongrong Wang
Article
  • 118 Downloads

Abstract

The reducibility of carbonaceous powder extracted from blast furnace dust was investigated. In this study, pickling treatment was used for BF bag dust and BF gravitational dust to extract the carbonaceous material. The structural characteristics of carbonaceous material were studied by X-ray diffraction, scanning electron microscope, and energy-dispersive spectrometer. The reduction of ferric oxide and carbon gasification experiments were researched by thermogravimetry. The results show that the pickled raw coal gives the highest reducibility, which is followed by BF bag dust and BF gravitational dust. The reason for this is that the higher disordered crystalline structure leads to stronger gasification reactivity, and further results in stronger reduction reactivity. Based on the randomized nucleation model, the kinetic analysis shows that the activation energies for the reduction reaction of BF gravitational dust, BF bag dust, and raw coal after pickling are 300.14, 180.43, and 124.62 kJ mol−1, respectively.

Notes

Acknowledgments

This research was financially supported by the National Key R&D Program of China (2017YFB0304300 & 2017YFB0304302) and the National Science Foundation of China (51874025).

References

  1. 1.
    H. Zhang: Metal Mine, 2008, vol. 41, pp. 131-136.Google Scholar
  2. 2.
    X. Zhu: Iron and Steel, 1988, vol. 23, pp. 60-62.Google Scholar
  3. 3.
    J. Li: Xi’an University of Architecture and Technology, MS, 2006, p. 1.Google Scholar
  4. 4.
    X. She, Q. Xue, J. Dong, J. Wang, H. Zeng, H. Li, Y. Ding, H. Yang, C. Peng: The Chinese Journal of Process Engineering, 2009, vol. 9, pp. 7-12.Google Scholar
  5. 5.
    Hoffman G E, Harada T: Ironmak. Steelmak., 1997, vol. 24, pp. 51-53.Google Scholar
  6. 6.
    T. Chun: PhD dissertation, Central South University, 2014, p. 6.Google Scholar
  7. 7.
    T. Ding, X. Xiao: Journal of Northeastern University, 1995, vol. 16, pp. 115-119.Google Scholar
  8. 8.
    E. Donskoi, D. Mcelwain, L. Wibberley: Metallurgical and Materials Transactions B, 2003, Vol. 34, pp. 255-266.CrossRefGoogle Scholar
  9. 9.
    Y. Sun, Y. Han, X. Wei, P. Gao: Journal of thermal analysis and calorimetry, 2016, vol. 123, pp. 703-715.CrossRefGoogle Scholar
  10. 10.
    J. Zhang, Y. Yan, M. Xu, X. Hong, X. Zhang: 2006, vol. 41, pp. 78–81.Google Scholar
  11. 11.
    J. Ju, Y. Dang, Z. Zhao: Iron Steel Vanadium Titan. 2013, vol. 34, pp. 36-40.Google Scholar
  12. 12.
    J. Zhang, Y. Li, X. Yuan, Z. Liu: Iron and Steel, 2018, vol. 53, pp. 1-10.Google Scholar
  13. 13.
    D.C. Mihaiescu, G. Predeanu, C. Panaitescu: 2014, vol. 76, pp. 227-234.Google Scholar
  14. 14.
    S. Gupta, V. Sahajwalla, P. Chaubal, T. Youmans: Metallurgical and Materials Transactions B, 2005, 36, pp. 385-394.CrossRefGoogle Scholar
  15. 15.
    K. Wu, R. Ding, Q. Han, S Yang, S. Wei, B. Ni: ISIJ international, 2010, vol. 50, pp. 390–395.CrossRefGoogle Scholar
  16. 16.
    D. Zhao, J. Zhang, G. Wang, A.N. Conejo, R. Xu, H. Wang, J. Zhong: Applied Thermal Engineering, 2016, vol. 108, pp. 1168-1177.CrossRefGoogle Scholar
  17. 17.
    J. Gu, S. Wu, X. Zhang, Y. Wu, J. Gao: Energy Sources, 2009, vol. 31, pp. 232-243.CrossRefGoogle Scholar
  18. 18.
    G. Khokhlova, C. Barnakov, V. Malysheva, A. Popova, Z. Ismagilov: Solid Fuel Chemistry, 2015, vol. 49, pp. 66-72.CrossRefGoogle Scholar
  19. 19.
    L. Lu, V. Sahajwalla, C. Kong, D. Harris: Carbon, 2001, vol. 39, pp. 1821-1833.CrossRefGoogle Scholar
  20. 20.
    Q. Wang, W. Zhao, H. Liu, C. Jia, X. Hao: Energy Procedia, 2012, vol. 17, pp. 869-875.CrossRefGoogle Scholar
  21. 21.
    W. Cao, J. Li, L. Lue: Energy Procedia, 2017, vol. 142, pp. 136-141.CrossRefGoogle Scholar
  22. 22.
    P. Wang, G. Wang, J. Zhang, J. Lee, Y. Li, C. Wang: Applied Thermal Engineering, 2018, vol. 143, pp. 736-745.CrossRefGoogle Scholar
  23. 23.
    S. Vladimir: Renewable Energy, 2006, vol. 31, pp. 1892-1905.CrossRefGoogle Scholar
  24. 24.
    Y. Man, J. Feng, F. Li, Q. Ge, J. Zhou: Powder Technology, 2014, vol. 256, pp. 361-366.CrossRefGoogle Scholar
  25. 25.
    R. Rashid, H. Salleh, M. Ani, N. Yunus, T. Akiyama, H. Purwanto: Renewable Energy, 2014, vol. 63, pp. 617-623.CrossRefGoogle Scholar
  26. 26.
    X. Li, B. Ma, L. Xu, Z. Hu, X. Wang: Thermochimica Acta 2006, vol. 441, pp. 79–83.CrossRefGoogle Scholar
  27. 27.
    J. Cheng, J. Zhou, J. Liu, Z. Zhou, X. Cao, K. Cen: Journal of Fuel Chemistry and Technology, 2004, vol. 32, pp. 37-42.Google Scholar
  28. 28.
    X. Li, Y. Lv, B. Ma, S. Jian, H. Tan: Bioresource technology, 2011, vol. 102, pp. 9783-9787.CrossRefGoogle Scholar
  29. 29.
    G. Wang, J. Zhang, X. Hou, J. Shao, W. Geng: Bioresource Technology, 2015, vol. 177, pp. 66–73.CrossRefGoogle Scholar
  30. 30.
    J. Zhou, X. Gong, Y. Wang, W. Li: China Coal, 2005, vol. 31, pp. 52-54.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yang Li
    • 1
  • Jianliang Zhang
    • 1
    • 2
  • Zhengjian Liu
    • 1
    Email author
  • Guilin Wang
    • 1
  • Shiqin Li
    • 1
  • Rongrong Wang
    • 1
  1. 1.University of Science and Technology BeijingBeijingP.R. China
  2. 2.School of Chemical EngineeringThe University of QueenslandSt LuciaAustralia

Personalised recommendations