Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2284–2295 | Cite as

Sulfide Transformation with Tellurium Treatment for Y15 Free-Cutting Steel

  • Shuo Zhang
  • Feng Wang
  • Shufeng YangEmail author
  • Jianhua Liu
  • Jingshe Li


To investigate the effect of tellurium on the morphology of sulfide, various amounts of tellurium powders were added to the Y15 free-cutting commercial steel melt and then the melt was cooled in different cooling modes. The composition and morphology of sulfide and telluride in steel were analyzed to investigate the mechanism of MnS transformation combined with in situ observation. The results showed that the precipitation of chain-like MnS inclusions was significantly inhibited due to the addition of tellurium, and these MnS inclusions were transformed into complex inclusions with lower aspect ratios, which were composed of MnS and MnTe. In air-cooling mode, the MnS inclusions were effectively spheroidized when the w([Te])/w([S]) in steel was 0.2, whereas tellurium had almost no effect on the morphology of sulfide in furnace-cooling mode. The mechanism of sulfide spheroidization is discussed. The mechanism was verified by in situ observation experiment through high-temperature laser confocal microscopy.



This research is supported by the National Science Foundation of China (Nos. 51574190 and 51574020).


  1. 1.
    K Oikawa, K Ishida, T Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332-38.CrossRefGoogle Scholar
  2. 2.
    S Luo, Y F Su, M Lu, J Kuo: Mater. Charact., 2013, vol. 82, pp. 103-12.CrossRefGoogle Scholar
  3. 3.
    M Jiang, Z Hu, X Wang, J J PAK: ISIJ Int., 2013, vol. 53, pp. 1386-91.CrossRefGoogle Scholar
  4. 4.
    T Tomita: J. Mater. Sci., 1994, vol. 29, pp. 2873-78.CrossRefGoogle Scholar
  5. 5.
    T Lis: Metalurgija., 2009, vol. 48, pp. 95-98.Google Scholar
  6. 6.
    X Zhang, L Zhang, W Yang, Y Wang, T Liu, Y Dong: Metall. Mater. Trans. B, 2017, vol. 48, pp. 701-12.CrossRefGoogle Scholar
  7. 7.
    L Leon, R B John, M Alex, K Michael: Metall. Mater. Trans. B, 1970, vol. 1, pp. 3341–50.Google Scholar
  8. 8.
    Y Guo, S He, G Chen, Q Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2549-2557.CrossRefGoogle Scholar
  9. 9.
    L Zheng, A Malfliet, P Wollants, B Blanpain, M Guo: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2447-58.CrossRefGoogle Scholar
  10. 10.
    N E Luiz: Mech. Eng. B , 2008, vol. 222, pp. 347-60.CrossRefGoogle Scholar
  11. 11.
    H Yaguchi, N Onodera: Trans. Inst. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 1051-59.CrossRefGoogle Scholar
  12. 12.
    X Shao, X Wang, M Jiang, W Wang, F Huang: ISIJ Int., 2011, vol. 51, pp. 1995-01.CrossRefGoogle Scholar
  13. 13.
    X Zhang, W Lu, R Qin: Mater. Res. Innov., 2015, vol. 18, pp. 244-248.CrossRefGoogle Scholar
  14. 14.
    X Zou, J Sun, H Matsuura, C Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2168-2173.CrossRefGoogle Scholar
  15. 15.
    H Mu, T Zhang, L Yang, R R Xavier, R J Fruehan, B A Webler: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3375-3383.CrossRefGoogle Scholar
  16. 16.
    T Li, T Taniguchi, K Uesugi: Metall. Mater. Trans. B, 2013, vol. 44, pp. 750-61.CrossRefGoogle Scholar
  17. 17.
    J Yang, W Tang, W Chen, J Yang: Metal Mater. Metall. Eng., 2015, vol. 43, pp. 9-15. (In Chinese)Google Scholar
  18. 18.
    J Qi, W Yang, W Zhu, T Qu, Y Liu, Y Ji: Iron Steel, 2013, vol. 48, pp. 79-83. (In Chinese)Google Scholar
  19. 19.
    P Shen, Q Yang, D Zhang, Y Yang, J Fu: Metals-basel, 2018, vol. 8, 639.CrossRefGoogle Scholar
  20. 20.
    T. T’Ien, L.H. Van Vlack, R.J. Martin: The System MnTe-MnS: Progress Report, New York, 1967.Google Scholar
  21. 21.
    M E Schlesinger: J. Phase Equilib., 1998, vol. 19, pp. 591-596.CrossRefGoogle Scholar
  22. 22.
    V Raghavan: J. Phase Equilib. Diff., 2011, vol. 32, pp. 147-151.CrossRefGoogle Scholar
  23. 23.
    L Zhang, Y Ren, H Duan, W Yang, L Sun: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1809-1825.CrossRefGoogle Scholar
  24. 24.
    C Shi, X Chen, H Guo: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 295-02.CrossRefGoogle Scholar
  25. 25.
    J Cissé, G F Bolling: J. Cryst. Growth, 1971, vol. 10, pp. 67-76.CrossRefGoogle Scholar
  26. 26.
    F R Juretzko, D M Stefanescu, B K DhindawK, S Sen, P A Curreri: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1691-1696.CrossRefGoogle Scholar
  27. 27.
    H Okamoto, L E Tanner: Bull. Alloy Phase Diagrams, 1990, vol. 11, pp. 371-376.CrossRefGoogle Scholar
  28. 28.
    P. Chen, C. Zhu, G. Li, Y. Dong, Z. Zhang: ISIJ Int., 2017, ISIJINT-2017-007.Google Scholar
  29. 29.
    Y Wang, J Yang, X Xin, R Wang, L Xu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1378-1389.CrossRefGoogle Scholar
  30. 30.
    D You, S K Michelic, G Wieser, C Bernhard: J. Mater. Sci., 2017, vol. 52, pp. 1797-1812.CrossRefGoogle Scholar
  31. 31.
    M T Nagata, J G Speer, D K Matlock: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3099-3110.CrossRefGoogle Scholar
  32. 32.
    Y C Lee, J C Chen: Opt. Mater., 1999, vol. 12, pp. 83-91.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Shuo Zhang
    • 1
  • Feng Wang
    • 1
  • Shufeng Yang
    • 2
    Email author
  • Jianhua Liu
    • 1
  • Jingshe Li
    • 2
  1. 1.Institute of Engineering TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations