Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 5, pp 2163–2174 | Cite as

Development of a Reliable Kinetic Model for Ladle Refining

  • Deepoo Kumar
  • Kevin C. Ahlborg
  • Petrus Christiaan PistoriusEmail author
Article
  • 197 Downloads

Abstract

Kinetic modeling of ladle refining can be used by steel plants to improve steelmaking and to produce cleaner steels. It can also help researchers to understand the process better. There have been several recent attempts to develop a kinetic model that can predict changes in steel, slag, and inclusion compositions with time. Often the models require parameters that can be difficult to measure under plant conditions, and model limitations have not been discussed in detail. In this study, a two-parameter kinetic model has been developed to predict changes in steel, slag, and inclusion compositions during ladle refining; the two parameters are the mass-transfer coefficient in steel and the inclusion flotation rate constant. The model was based on FactSage macro-processing. Examples of results show that the model can be used to diagnose effects of steel and slag sampling practices and to estimate alloy dissolution time. The model results demonstrate that the presence of solids in slag can significantly reduce the rate of steel–slag reaction while maintaining a high inclusion flotation rate. Some limitations of the model are discussed: the overprediction of calcium transfer to alumina inclusions and the absence of information on inclusions originating from entrained slag.

Notes

References

  1. 1.
    [1] K. Shibata, Y. Mizukaml, and T. Kitamura: ISIJ Int., 1991 vol. 31 (11), pp. 1322–1328.CrossRefGoogle Scholar
  2. 2.
    [2] S.-H. Kim and R. J. Fruehan: Metall. Trans. B, 1987, vol. 18 (4), pp. 673–680.CrossRefGoogle Scholar
  3. 3.
    [3] D. Roy, P. C. Pistorius, and R. J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44 (5), pp. 1086–1094.CrossRefGoogle Scholar
  4. 4.
    [4] D. Roy, P. C. Pistorius, and R. J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44 (5), pp. 1095–1104.CrossRefGoogle Scholar
  5. 5.
    [5] K. J. Graham and G. A. Irons: AISTech 2008 Proc., Associtation for Iron & Steel Technology, Warrendale, 2008, pp. 1181–1194.Google Scholar
  6. 6.
    [6] P. K. Iwamasa and R. J. Fruehan: Metall. Mater. Trans. B, 1997, vol. 28 (1), pp. 47–57.CrossRefGoogle Scholar
  7. 7.
    [7] T. Kargul and J. Falkus: Steel Res. Int., 2010, vol. 81 (11), pp. 953–958.CrossRefGoogle Scholar
  8. 8.
    [8] J. Peter, K. D. Peaslee, D. G. C. Robertson, M. Hall, and B. G. Thomas: AISTech 2005 Proc., Proc., Associtation for Iron & Steel Technology, Warrendale, 2005, pp. 959–967.Google Scholar
  9. 9.
    [9] C. Cicutti, C. Capurro, and C. Cerrutti: in 9th Int. Conf. Exhib. on Clean Steel, Simulation and Model Calculations, Hungarian Mining and Metallurgical Society (OMBKE), Budapest, 2015.Google Scholar
  10. 10.
    [10] G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol. 40 (2), pp. 121–128.CrossRefGoogle Scholar
  11. 11.
    [11] J. H. Shin, Y. Chung, and J. H. Park: Metall. Mater. Trans. B, 2016, 48(1), pp. 46-59.Google Scholar
  12. 12.
    [12] A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53 (12), pp. 2110–2117.CrossRefGoogle Scholar
  13. 13.
    [13] A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53 (12), pp. 2118–2125.CrossRefGoogle Scholar
  14. 14.
    [14] A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F. Huang and S. Kitamura: ISIJ Int., 2014, vol. 54 (11), pp. 2569–2577.CrossRefGoogle Scholar
  15. 15.
    [15] M. -A. Van Ende and I. H. Jung: Metall. Mater. Trans. B, 2017, vol. 48 (1), pp. 28-36.CrossRefGoogle Scholar
  16. 16.
    [16] S. Ohguchi, D. G. C. Robertson, B. Deo, P. Grieveson, and J. H. E. Jeffes: Ironmaking and Steelmaking, 1984, vol. 11 (4), pp. 202–213.Google Scholar
  17. 17.
    [17] A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54 (10), pp. 2230–2238.CrossRefGoogle Scholar
  18. 18.
    [18] D. Kumar and P. C. Pistorius: AISTech 2016 Proc., Associtation for Iron & Steel Technology, Warrendale, 2016, pp. 1151–1160.Google Scholar
  19. 19.
    [19] D. Tang, M. E. Ferreira, and P. C. Pistorius: Microsc. Microanal., 2017, vol. 23 (6), 1082-1090.CrossRefGoogle Scholar
  20. 20.
    C. Merlet: X-Ray Opt. Microanal. 1992: Proc. 13th Int. Congr., 1992, pp. 123–26.Google Scholar
  21. 21.
    [21] C. Merlet: Mikrochim. Acta, 1994, vols. 114–115, pp. 363–376.CrossRefGoogle Scholar
  22. 22.
    [22] J. Tan and P. C. Pistorius: AISTech 2013 Proc., Associtation for Iron & Steel Technology, Warrendale, 2013, pp. 1301–1311.Google Scholar
  23. 23.
    [23] S. P. T. Piva, D. Kumar, and P. C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48(1), pp. 37–45.CrossRefGoogle Scholar
  24. 24.
    [24] K. H. Javed: Science and Practice of Liquid-Liquid Extraction, Chapter-4. Clarendon Press, Oxford, 1992.Google Scholar
  25. 25.
    D. Kumar and P.C. Pistorius: Metall. Mater. Trans. B, 2019, vol. 50, pp. 181–191.  https://doi.org/10.1007/s11663-018-1436-z.CrossRefGoogle Scholar
  26. 26.
    D. Kumar and P.C. Pistorius: Adv. Molten Slags Fluxes Salts Proc. 10th Int. Conf. Molten Slags Fluxes Salts, 2016, pp. 145–53.Google Scholar
  27. 27.
    [27] D. Kumar, K. C. Ahlborg, and P. C. Pistorius: AISTech 2017 Proc., Association for Iron & Steel Technology, Warrendale, 2017, pp. 2693–2706.Google Scholar
  28. 28.
    [28] S. Yngve: Scand. J. Metall., vol. 7, pp. 81–87, 1978.Google Scholar
  29. 29.
    [29] C. A. Abel, R. J. Fruehan, and A. Vassilicos: Trans. Iron Steel Soc., 1995, vol. 49 (August), pp. 49–64.Google Scholar
  30. 30.
    [30] K. Schwerdtfeger: Arch. Eisenhüttenwes., 1983, vol. 54 (3), pp. 87–98.CrossRefGoogle Scholar
  31. 31.
    [31] N. Bannenberg, B. Bergmann, and H. Gaye: Steel Res. Int., 1992, vol. 63 (10), pp. 431–437.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Center for Iron and Steelmaking Research, Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.ArcelorMittal Steel ClevelandClevelandUSA

Personalised recommendations