Advertisement

An Investigation of the Effect of Sintering Conditions on the Mechanical Behavior of Electroplated Nickel Foams

  • Faeze Barzegar
  • Akram SalehiEmail author
  • Ahmad MoloodiEmail author
Article

Abstract

This study investigates the effect of sintering temperature on the compression strength of nickel foams in an inert atmosphere. The nickel foams were produced by the electrodeposition technique on polyurethane foam substrate. As-plated Ni foams were sintered at 873 K, 1073 K, and 1273 K (600 °C, 800 °C, and 1000 °C) in order to eliminate polyurethane and to enhance ductility at a controlled atmosphere. A compression test was used to determine the mechanical behavior. The morphology of produced foams was analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) techniques. Quantitative EDS analysis implied that carbon diffuses into nickel structure during the polyurethane decomposition. The amount of carbon in nickel foam increases with heat treatment temperature. The results also reveal that the oxygen impurity arisen from polymer vapors can diffuse into the nickel structure at elevated sintering temperature [i.e., 1273 K (1000 °C)]. The compression curve of as-plated foam showed brittle behavior due to the electroplating condition. The sintering process in the neutral atmosphere could create ductile foams, although the strength of the foams decreases with an increase in the sintering temperature.

Notes

References

  1. 1.
    Y. Sun, R. Burgueño, W. Wang, and I. Lee: Int. J. Sol. Struct., 2015, vol. 54, pp. 135–46.CrossRefGoogle Scholar
  2. 2.
    S. Sahu and M.Z. Ansari: Am. J. Mater. Sci., 2015, vol. 5, pp. 38–42.Google Scholar
  3. 3.
    K.-L. Yan, J.-F. Qin, Z.-Z. Liu, B. Dong, J.-Q. Chi, W.-K. Gao, J.-H. Lin, Y.-M. Chai, and C.-G. Liu: Chem. Eng. J., 2018, vol. 334, pp. 922–31.CrossRefGoogle Scholar
  4. 4.
    J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, J. Qian, and X. Liu: Chem. Eng. J., 2018, vol. 334, pp. 1466–76.CrossRefGoogle Scholar
  5. 5.
    J. Chen, K. Sheng, P. Luo, C. Li, and G. Shi: Adv. Mater., 2012, vol. 24, pp. 4569–73.CrossRefGoogle Scholar
  6. 6.
    L. Lin, S. Tang, S. Zhao, X. Peng, and N. Hu: Electrochimica Acta, 2017, vol. 228, pp. 175–82.CrossRefGoogle Scholar
  7. 7.
    L. Jinlong, L. Tongxiang, Y. Meng, K. Suzuki, and H. Miura: J. Electroanal. Chem., 2017, vol. 786, pp. 8–13.CrossRefGoogle Scholar
  8. 8.
    P. Qiu, G.-H. Wu, D.-L. Sun, Z.-Y. Xiu, Q. Zhang, and Z.-l. Hu: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 566–72.CrossRefGoogle Scholar
  9. 9.
    H. Choe and D.C. Dunand: Mater. Sci. Eng.: A, 2004, vol. 384, pp. 184–93.CrossRefGoogle Scholar
  10. 10.
    P. Qiu, Z.-L. Hu, and G.-R. Wang: Trans. Nonferr. Met. Soc. China, 2017, vol. 27, pp. 1052–62.CrossRefGoogle Scholar
  11. 11.
    O. Smorygo, V. Mikutski, A. Leonov, A. Marukovich, and Y. Vialiuha: Scripta Mater., 2008, vol. 58, pp. 910–13.CrossRefGoogle Scholar
  12. 12.
    L. Xiao, W. Song, H. Tang, Z. Zhu, J. Wang, and H. Wang: Mater. Des., 2015, vol. 85, pp. 47–53.CrossRefGoogle Scholar
  13. 13.
    A. Hodge and D. Dunand: Intermetallics, 2001, vol. 9, pp. 581–89.CrossRefGoogle Scholar
  14. 14.
    V. Paserin, S. Marcuson, J. Shu, and D.S. Wilkinson: Adv. Eng. Mater., 2004, vol. 6, pp. 454–59.CrossRefGoogle Scholar
  15. 15.
    P. Liu and K. Liang: Mater. Sci. Technol., 2000, vol. 16, pp. 575–78.CrossRefGoogle Scholar
  16. 16.
    J.R. Brannan, A.J. Vaccaro, and J.P. Healy: Google Patents, 1994.Google Scholar
  17. 17.
    E. Pinkhasov: Google Patents, 1990.Google Scholar
  18. 18.
    K.K. Cushnie and S.T. Campbell: Google Patents, 1998.Google Scholar
  19. 19.
    P. Liu, H. Chen, K. Liang, S. Gu, Q. Yu, T. Li, and C. Fu: J. Appl. Electrochem., 2000, vol. 30, pp. 1183–86.CrossRefGoogle Scholar
  20. 20.
    D. Clodic: Google Patent, Armines, 2002.Google Scholar
  21. 21.
    A. Salehi, A. Moloodi, F. Barzegar, and J. Mirabbasi: Materials Science Forum, Trans Tech Publications, Aedermannsdorf, Switzerland, 2018, pp. 11–16.Google Scholar
  22. 22.
    V. Vitry, E. Francq, and L. Bonin: Surf. Eng., 2019, vol. 35, pp. 158–66.CrossRefGoogle Scholar
  23. 23.
    N. Imaz, J. Díez, E. Pellicer, J. Sort, H. Grande, and E. García-Lecina: Trans. IMF, 2017, vol. 95, pp. 31–38.CrossRefGoogle Scholar
  24. 24.
    ISO Standard: ISO Reference No. 13314, pp. 1–7.Google Scholar
  25. 25.
    JSA: JSA, 2012.Google Scholar
  26. 26.
    G.N. Standard: German National Standard, 2008.Google Scholar
  27. 27.
    N. Kanani: Electroplating: Basic Principles, Processes and Practice, Elsevier, Amsterdam, 2004.Google Scholar
  28. 28.
    J.-W. Park and C.J. Altstetter: Metall. Trans. A, 1987, vol. 18A, pp. 43–50.CrossRefGoogle Scholar
  29. 29.
    S. Garruchet, O. Politano, P. Arnoux, and V. Vignal: Solid State Commun., 2010, vol. 150, pp. 439–42.CrossRefGoogle Scholar
  30. 30.
    Y.-A. Zhu, Y.-C. Dai, D. Chen, and W.-K. Yuan: Carbon, 2007, vol. 45, pp. 21–27.CrossRefGoogle Scholar
  31. 31.
    S. Perusin, D. Monceau, and E. Andrieu: J. Electrochem. Soc., 2005, vol. 152, pp. E390–E397.CrossRefGoogle Scholar
  32. 32.
    D.T. Queheillalt, Y. Katsumura, and H.N. Wadley: Scripta Mater., 2004, vol. 50, pp. 313–17.CrossRefGoogle Scholar
  33. 33.
    W.-Y. Kim, R. Matsumoto, and H. Utsunomiya: Mater. Trans., 2017, vol. 58, pp. 1373–78.CrossRefGoogle Scholar
  34. 34.
    O.B. Olurin, D.S. Wilkinson, G.C. Weatherly, V. Paserin, and J. Shu: Compos. Sci. Technol., 2003, vol. 63, pp. 2317–29.CrossRefGoogle Scholar
  35. 35.
    V. Tracey: Powder Metall., 1979, vol. 22, pp. 45–48.CrossRefGoogle Scholar
  36. 36.
    L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, United Kingdom, 1999.Google Scholar
  37. 37.
    S.-F. Fan, T. Zhang, Y. Kun, H.-J. Fang, H.-Q. Xiong, Y.-L. Dai, D.-Y. Jiang, and H.-L. Zhu: Trans. Nonferrous Met. Soc. China, 2017, vol. 27, pp. 117–24.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Materials Research GroupIranian Academic Center for Education, Culture and Research (ACECR)MashhadIran

Personalised recommendations