High-Temperature Interactions Between Vanadium-Titanium Magnetite Carbon Composite Hot Briquettes and Pellets Under Simulated Blast Furnace Conditions

  • Wei Zhao
  • Mansheng ChuEmail author
  • Zhenggen Liu
  • Hongtao Wang
  • Jue Tang
  • Ziwei Ying


The high-temperature interactions between vanadium-titanium magnetite carbon composite hot briquettes (VTM-CCBs) and pellets were systematically investigated under simulated blast furnace conditions with respect to the reduction behavior, softening–melting–dripping characteristics, gas permeability, and Ti(C, N) precipitation mechanisms. The results showed that VTM-CCB charging can promote the reduction of the pellet in the packed bed and decrease the compressive strength of the pellet after reduction. The compressive strength of the VTM-CCB after reduction decreased with increasing temperature when the FC/O ratio (the ratio of the fixed carbon mol(C) in coal to the reducible oxygen mol(O) in iron oxides) was higher than 1.0. With an FC/O ratio lower than 1.0, the compressive strength of the VTM-CCB initially decreased and then increased. The FC/O ratio has a significant influence on the softening–melting interaction mechanism between the VTM-CCB and the pellet. With an FC/O ratio of 0.8, the bonding layer at the interface between the pellet and the VTM-CCB (consisting of molten fayalitic slag) can promote the softening process, thereby decreasing the softening start and end temperatures. By increasing the FC/O ratio to 1.4, a dense metallic iron shell with relatively high strength formed at the interface and restricted the collapse of the packed bed, thereby increasing the softening start and end temperatures and ensuring the transport of the reduction gas through the packed bed. The melting point of the primary slag phase increased with increasing FC/O ratio due to a decrease in the FeO content, which resulted in an increase in the melting start temperature from 1273 °C to 1294 °C (1546 K to 1567 K). The gas permeability in the cohesive zone increased with an increasing FC/O ratio of the VTM-CCB due to a combination of the skeletal role performed by the residual VTM-CCB and the decrease in the liquid slag proportion. In addition, as the FC/O ratio increased to 1.4, unconsumed carbon promoted the precipitation of Ti(C, N) at the slag–carbon and slag–metal interfaces, which resulted in a substantial increase in the dripping temperature and deterioration of the dripping behavior of the packed bed. Therefore, to suppress the precipitation of Ti(C, N) and improve the dripping behavior of the packed bed, the FC/O ratio of the charged VTM-CCB should be controlled within an appropriate range.



The authors are especially thankful to the National Natural Science Foundation of China (51574067), China Postdoctoral Science Foundation (2016M601321), Joint Funds of the National Natural Science Foundation of China (U1808212), and Fundamental Research Funds for the Central Universities (N172503016).


  1. 1.
    [1] T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun and G.B. Qiu: Metall. Mater. Trans. B, 2013, vol. 44, pp. 252-60.CrossRefGoogle Scholar
  2. 2.
    Tang J, Chu MS, Feng C, Li F, Tang YT, Liu ZG (2017) ISIJ Int 57:1156-1165CrossRefGoogle Scholar
  3. 3.
    [3] Z.G. Hao, H.G. Fei, L. Liu and T. Susan: Acta Geologica Sinica, 2012, vol. 87, pp. 286-87.Google Scholar
  4. 4.
    [4] H.G. Du: Principle of Blast Furnace Smelting Vanadium-Titanium Magnetite, Science Press, Beijing, 1996, pp. 1-10.Google Scholar
  5. 5.
    [5] S. Samanta, S. Mukherjee and R. Dey, JOM, 2015, vol. 67, pp. 467-76.CrossRefGoogle Scholar
  6. 6.
    [6] T. Anyashiki, K. Fukada and H. Fujimoto: JFE Technical Report, 2009, vol. 13, pp. 1-6.Google Scholar
  7. 7.
    Kasai A, Toyota H, Nozawa K, Kitayama S (2011) ISIJ Int 51:1333-1335CrossRefGoogle Scholar
  8. 8.
    [8] Y. Tanaka, T. Ueno, K. Okumura and S. Hayashi: ISIJ Int., 2011, vol. 51, pp. 1240-46.CrossRefGoogle Scholar
  9. 9.
    [9] Y. Matsui, M. Sawayama, A. Kasai, Y. Yamagata and F. Noma: ISIJ Int., 2003, vol. 43, pp.1904-12.CrossRefGoogle Scholar
  10. 10.
    [10] M. Naito, K. Takeda, Y. Matsui: ISIJ Int., 2015, vol. 55, pp. 7-35.CrossRefGoogle Scholar
  11. 11.
    [11] W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying and J. Tang: Steel Res. Int., 2017, vol. 88, pp. 1-9.Google Scholar
  12. 12.
    [12] W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying, and J. Tang: JOM, 2017, vol. 69, pp. 1737-44.CrossRefGoogle Scholar
  13. 13.
    [13] W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, and Z.W. Ying: ISIJ Int., 2018, vol. 58, 823-32.CrossRefGoogle Scholar
  14. 14.
    [14] X.L. Liu, S.L. Wu, W. Huang, K.F. Zhang, and K.P. Du: ISIJ Int., 2014, vol. 54, 2089-96.CrossRefGoogle Scholar
  15. 15.
    [15] S.L. Wu, H.L. Han, H.F. Xu, H.W. Wang, and X.Q. Liu: ISIJ Int., 2010, vol. 50, 686-94.CrossRefGoogle Scholar
  16. 16.
    [16] X.F. She, J.S. Wang, J.Z. Liu, X.X. Zhang, and Q.G. Xue: ISIJ Int., 2014, vol. 54, 2728-36.CrossRefGoogle Scholar
  17. 17.
    [17] P. Kaushik and R. J. Fruehan: Ironmaking & Steelmaking, 2007, vol. 34, 10-22.CrossRefGoogle Scholar
  18. 18.
    Nogueira PF, Fruehan RJ (2004) Metall Mater Trans B 35B:829-838CrossRefGoogle Scholar
  19. 19.
    Nogueira PF, Fruehan RJ (2005) Metall Mater Trans B 36B:583-590CrossRefGoogle Scholar
  20. 20.
    Nogueira PF, Fruehan RJ (2006) Metall Mater Trans B 37B:551-558CrossRefGoogle Scholar
  21. 21.
    [23] G. J. Cheng, X. X. Xue, T. Jiang and P. N. Duan: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1713-26.CrossRefGoogle Scholar
  22. 22.
    [21] X. Z. Zhang, Principles of Transfer in Metallurgy, Metallurgy Industry Press, Beijing, 2005, pp. 386-90.Google Scholar
  23. 23.
    [22] S.L. Wu, B.Y. Tuo, L.H. Zhang, K.P. Du, and Y. Sun: Steel Res. Int., 2014, vol. 85, pp. 233-42.CrossRefGoogle Scholar
  24. 24.
    [24] R.J. Fruehan: Metall. Mater. Trans. B, 2009, vol. 40, pp. 123-33.CrossRefGoogle Scholar
  25. 25.
    Pesl J, Eriç RH (1999) Metall Mater Trans B 30B:695-705CrossRefGoogle Scholar
  26. 26.
    [26] G. Eriksson, A.D. Pelton, E. Woermann, and A. Ender: Cheminform, 1997, vol. 100, pp. 1839-49.Google Scholar
  27. 27.
    [27] K. Hu, X.W. Lv, S.P. Li, W. Lv, B. Song, and K.X. Han: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1963-73.CrossRefGoogle Scholar
  28. 28.
    [28] G.H. Zhang, Y.L. Zhen, and K.C. Chou: ISIJ Int., 2015, vol. 55, 922-27.CrossRefGoogle Scholar
  29. 29.
    [29] Y.L. Zhen, G.H. Zhang, and K.C. Chou: Metall. Mater. Trans. B, 2015, vol. 46, 155-61.CrossRefGoogle Scholar
  30. 30.
    [30] H. Park, J.Y. Park, G.H. Kim, Il Sohn: Steel Res. Int., 2012, vol. 83, pp. 150-56.CrossRefGoogle Scholar
  31. 31.
    [34] H.G. Du: Principle of Smelting Vanadium-Titanium Magnetite in the Blast Furnace, 1st ed., Science Press, Beijing, 1996, p. 58.Google Scholar
  32. 32.
    [31] N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. Mater. Trans. B, 2003, vol. 34, pp. 509-16.CrossRefGoogle Scholar
  33. 33.
    Shankar A, Görnerup M, Lahiri AK, Seetharaman S (2007) Metall Mater Trans B 38B:911-915CrossRefGoogle Scholar
  34. 34.
    Sohn I, Wang WL, Matsuura H, Tsukihashi F, Min DJ (2012) ISIJ Int 52:158-160CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Wei Zhao
    • 1
  • Mansheng Chu
    • 1
    Email author
  • Zhenggen Liu
    • 1
  • Hongtao Wang
    • 1
  • Jue Tang
    • 1
  • Ziwei Ying
    • 1
  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations