Metallurgical and Materials Transactions B

, Volume 50, Issue 4, pp 1841–1851 | Cite as

Oxygen Potential of High-Titania Slag from the Smelting Process of Ilmenite

  • Kai Hu
  • Xuewei LvEmail author
  • Zhiming Yan
  • Wei Lv
  • Run Zhang
  • Jie Dang
  • Zhixiong You


Oxygen potential of TiO2-FeO-Ti2O3 ternary slags was determined by the electromotive force (EMF) method based on the solid electrolyte oxygen sensor at 2003 K (1730 °C). The effect of FeO content and Ti3+/Ti4+ mass ratio on the oxygen potential of the high-titania slag was also studied. At a fixed Ti3+/Ti4+ mass ratio of 3.11, the oxygen potential increased with increasing FeO content. Increase of Ti3+/Ti4+ mass ratio from 2.29 to 3.60 caused a significant decrease in the oxygen potential of the slag. Comparing measured oxygen potential with the calculated values indicated that the oxygen potential of the slag might be determined by FeO/Fe equilibrium reaction rather than TiO2/Ti2O3 reaction. In addition, the experimentally measured oxygen potential values were modeled by multiple linear regression analysis, and a semi-empirical mathematical correlation was established between the oxygen potential and slag compositions. The iso-oxygen potential distribution diagram based on the mathematical model was obtained for the high-titania slag.



The authors are grateful to National Key R&D Program of China (2018YFC1900500). The chemical composition analysis of all the samples was performed by Panzhihua Iron and Steel Research Institute. The corresponding author prof. Xuewei Lv is especially grateful to prof. P. Christiaan Pistorius in Carnegie Mellon University for his constructive suggestions to this paper.


  1. 1.
    H. G. Du and Z. P. Zhang, Iron Steel Vanadium Titanium, 1995, vol. 16, pp. 1-5.Google Scholar
  2. 2.
    K. Kiukkola and C. Wagner, Journal of the electrochemical society, 1957, vol. 104, pp. 308-316.CrossRefGoogle Scholar
  3. 3.
    B. Coletti, S. Smets, B. Blanpain, P. Wollants, J. Plessers, C. Vercruyssen and B. Gommers, Ironmaking & Steelmaking, 2003, vol. 30, pp. 217-222.CrossRefGoogle Scholar
  4. 4.
    M. Kawakami, K. S. Goto and M. Matsuoka, Metallurgical and Materials Transactions B, 1980, vol. 11, pp. 463-469.CrossRefGoogle Scholar
  5. 5.
    J. W. Matousek, Jom, 2013, vol. 65, pp. 1584-1588.CrossRefGoogle Scholar
  6. 6.
    K. Nagat and K. S. Goto, Solid State Ionics, 2006, vol. 9, pp. 1249-1256.Google Scholar
  7. 7.
    K. Nagata and K. S. Goto, Tetsu- to- Hagane, 2009, vol. 74, pp. 1801-1808.CrossRefGoogle Scholar
  8. 8.
    E. T. Turkdogan, Ironmaking & Steelmaking, 2013, vol. 27, pp. 32-36.CrossRefGoogle Scholar
  9. 9.
    O. Volkova, M. E. Vogel and D. Janke, Ironmaking & Steelmaking, 2003, vol. 30, pp. 287-292.CrossRefGoogle Scholar
  10. 10.
    K. Q. Huang, Q. G. Liu, Iron & Steel, 1991, vol. 26, pp. 68-72.Google Scholar
  11. 11.
    P. Geldenhuis, P. C. Pistorius. Journal of the Southern African Institute of Mining and Metallurgy, 1999, vol. 99, pp. 41-47.Google Scholar
  12. 12.
    J. Pesl and R. Hurman Eriç, Metallurgical and Materials Transactions B, 1999, vol. 30, pp. 695-705.CrossRefGoogle Scholar
  13. 13.
    K. Borowiec and T. Rosenqvist, Scandinavian Journal of Metallurgy, 1981, vol. 10, pp. 217-224.Google Scholar
  14. 14.
    S. K. Gupta, V. Rajakumar and P. Grieveson, Canadian Metallurgical Quarterly, 2013, vol. 28, pp. 331-335.CrossRefGoogle Scholar
  15. 15.
    R. R. Merritt and A. G. Turnbull, Journal of Solid State Chemistry, 1974, vol. 10, pp. 252-259.CrossRefGoogle Scholar
  16. 16.
    S. Itoh, O. Inoue and T. Azakami, Materials Transactions, JIM, 1998, vol. 39, pp. 391-398.CrossRefGoogle Scholar
  17. 17.
    L. A. Taylor, R. J. Williams and R. H. McCallister, Earth and Planetary Science Letters, 1972, vol. 16, pp. 282-288.CrossRefGoogle Scholar
  18. 18.
    H. Schmalzried, Berichte der Bunsengesellschaft für physikalische Chemie, 1962, vol. 66, pp. 572-576.Google Scholar
  19. 19.
    S. H. Liu, R. J. Fruehan, A. Morales and B. Ozturk, Metallurgical & Materials Transactions B, 2001, vol. 32, pp. 31-36.CrossRefGoogle Scholar
  20. 20.
    K. Hu, X. W. Lv, S. P. Li, W. Lv, B. Song and K. Han, Metallurgical and Materials Transactions B, 2018, vol. 49, pp. 1963-1973.CrossRefGoogle Scholar
  21. 21.
    From Stian Seim: NTNU, PhD Thesis, 2011, pp. 271.Google Scholar
  22. 22.
    G. Eriksson, A. D. Pelton, E. Woermann and A. Ender, Cheminform, 1997, vol. 100, pp. 1839-1849.Google Scholar
  23. 23.
    A. H. Webster and N. F. H. Bright, Journal of the American Ceramic Society, 2010, vol. 44, pp. 110-116.CrossRefGoogle Scholar
  24. 24.
    G. Tranell, O. Ostrovski and S. Jahanshahi, Metallurgical and Materials Transactions B, 2002, vol. 33, pp. 61-67.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Kai Hu
    • 2
    • 3
  • Xuewei Lv
    • 1
    • 2
    • 3
    Email author
  • Zhiming Yan
    • 2
    • 3
  • Wei Lv
    • 2
    • 3
  • Run Zhang
    • 2
    • 3
  • Jie Dang
    • 2
    • 3
  • Zhixiong You
    • 2
    • 3
  1. 1.State Key Laboratory of Mechanical TransmissionsChongqing UniversityChongqingP.R. China
  2. 2.School of Materials Science and EngineeringChongqing UniversityChongqingP.R. China
  3. 3.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New MaterialsChongqing UniversityChongqingP.R. China

Personalised recommendations