Advertisement

Precipitation Mechanism and Reduction of Amount of Primary Carbides During Electroslag Remelting of 8Cr13MoV Stainless Steel

  • Qin-Tian Zhu
  • Jing LiEmail author
  • Jie Zhang
  • Cheng-Bin ShiEmail author
  • Ji-Hui Li
  • Jun Huang
Article
  • 30 Downloads

Abstract

The precipitation and growth of primary carbides in 8Cr13MoV steel during electroslag remelting (ESR) were studied. The effects of melting rate and fill ratio of ESR on the reduction of primary carbides were clarified. Primary carbides M7C3 precipitated from liquid steel at the final stage of solidification, which is attributed to an enrichment of carbon and chromium in liquid steel. The carbon content in the residual liquid steel was the determining factor for the formation of primary carbides. The growth of primary carbides was affected mainly by the chromium-concentration and temperature-field gradients. An appropriate melting rate facilitated the nucleation and growth of dendrites, which caused dendrite closure and prevented the further enrichment of carbon atoms. Primary carbides were refined and their amount was reduced when using a lower ESR melting rate. The fill ratio can affect the uniformity of the temperature field in the liquid metal pool and heat transfer from the slag pool to the liquid metal pool, and an optimal fill ratio resulted in a minimum mushy zone and less primary carbides. The volume fraction of primary carbides was reduced by 23 pct when the melting rate decreased from 150 to 133 kg/h and the fill ratio increased from 0.23 to 0.33.

Notes

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (Grant Nos. 51574025 and 51504019) and Guangdong YangFan Innovative & Entepreneurial Research Team Program (Grant No. 2016YT03C071).

References:

  1. 1.
    K. C. Hwang and S. Lee, H. C. Lee: Mater. Sci. Eng. A, 1998, vol. 254, pp. 296-304.CrossRefGoogle Scholar
  2. 2.
    C.A.C. Imbert and H.J. McQueen: Can. Metall. Quart., 2013, vol. 40, pp. 235-44.CrossRefGoogle Scholar
  3. 3.
    C.B. Shi, Q.T. Zhu, W.T. Yu, H.D. Song and J. Li: J. Mater. Eng. Perform., 2016, vol. 25, pp. 4785-95.CrossRefGoogle Scholar
  4. 4.
    Q.T. Zhu, J. Li, C.B. Shi, W.T. Yu and J.H. Li: Int. J. Mater. Res., 2017, vol. 108, pp. 20-8.CrossRefGoogle Scholar
  5. 5.
    Q. Liu, H. Zhang, Q. Wang, X. Zhou, P.G. Jonsson and K. Nakajima: ISIJ Int., 2012, vol. 12, pp. 2210-19.CrossRefGoogle Scholar
  6. 6.
    W.T. Yu, J. Li, C. B. Shi and Q.T. Zhu: Metals, 2016, vol. 8, pp. 193-208.CrossRefGoogle Scholar
  7. 7.
    X.J. Wu, J.D. Xing, H.G. Fu and X.H. Zhi: Mater. Sci. Eng. A, 2007, vol. 457, pp. 180-85.CrossRefGoogle Scholar
  8. 8.
    K.S. Cho, S.I. Kim, S.S. Park, W.S. Choi, H.K. Moon and H. Kwon: Metall. Mater. Trans. A, 2015, vol. 47A, pp. 26-32.Google Scholar
  9. 9.
    I. V. Doronin, Y. A. Lukina, I. O. Bannykh and P.L. Alekseev: Russ. Metall., 2011, vol. 1, pp. 29-32.CrossRefGoogle Scholar
  10. 10.
    G. Lvov, V. I. Levit and M. J. Kaufman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1669-79.CrossRefGoogle Scholar
  11. 11.
    W. H. Jiang, X. D. Yao, H. R. Guan and Z.Q. Hu: J. Mater. Sci., 1999, vol. 12, pp. 2859-64.CrossRefGoogle Scholar
  12. 12.
    E. Lee, W. Park, J. Y. Jung and S. Ahn: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1395-1404.CrossRefGoogle Scholar
  13. 13.
    F.S. Pan, W.Q. Wang, A.T. Tang, L.Z. Wu and T.T. Liu: Prog. Nat. Sci., 2011, vol. 2, pp. 180-86.CrossRefGoogle Scholar
  14. 14.
    Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, China, 2011, pp. 66.Google Scholar
  15. 15.
    A. Mitchell and B. Hernandez-morales: Metall. Trans. B, 1990, vol. 21B, pp. 723-31.CrossRefGoogle Scholar
  16. 16.
    K. Fezi, J. Yanke and M. J. M.Krane: Metal. Mater. Trans. B, 2015, vol. 46B, pp. 766-79.CrossRefGoogle Scholar
  17. 17.
    Y. F. Qi, J. Li, C.B. Shi, Y. Zhang, Q.T. Zhu and H. Wang: J. Mater. Process. Technol., 2017, vol. 249, pp. 32-38.CrossRefGoogle Scholar
  18. 18.
    X. Chen, Z. Jiang, F. Liu, J. Yu and K. Chen: Steel. Res. Int., 2017,vol. 88, pp. 186-95.Google Scholar
  19. 19.
    W.T. Yu, J. Li, C.B. Shi and Q.T. Zhu: Mater. Trans., 2016, vol. 57, pp. 1547-51.CrossRefGoogle Scholar
  20. 20.
    V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V. Schmitt, S. Hans and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271-80.CrossRefGoogle Scholar
  21. 21.
    S. D. Ridder, F. C. Reyes, S. Chakravorty, R. Mehrabian, J.D. Nauman, J.H. Chen and H.J. Klein: Metall. Trans. B, 1978, vol. 9B, pp. 415-25.CrossRefGoogle Scholar
  22. 22.
    Q. Wang and B.K. Li: Appl. Therm. Eng., 2015, vol. 91, pp. 116-25.CrossRefGoogle Scholar
  23. 23.
    K.M. Kelkar, S.V. Patankar, S.K. Srivatsa, R.S. Minisandram, D.G. Evans, J.J. DeBarbadillo, R.H. Smith, R.C. Helmink, A. Mitchell, and H.A. Sizek: Proceedings of the 2013 International Symposium on Liquid Metal Processing & Casting, 2013, pp. 3–12.Google Scholar
  24. 24.
    A. Mitchell and S. Joshi: Metall. Trans., 1972, vol.3, pp. 2306-07.CrossRefGoogle Scholar
  25. 25.
    Y.W. Dong, Z.H. Jiang, H. Liu, R. Chen and Z.W. Song: ISIJ Int., 2012, vol. 52, pp. 2226-34.CrossRefGoogle Scholar
  26. 26.
    K.C. Mills and B.J.Keene: Int. Mater. Rev., 1981, vol.1, pp. 21-26.CrossRefGoogle Scholar
  27. 27.
    E. Karimi-sibaki, A. Kharicha, J. Bohacek, M. Wu and A. Ludwig: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2049-61.CrossRefGoogle Scholar
  28. 28.
    W.X. Song: Metallography, Metallurgical Industry Press, Beijing, China, 2011, pp. 326.Google Scholar
  29. 29.
    N. Barnes, S. Clark, S. Seetharamah and P.F. Mendez: Acta. Mater., 2018, vol 151, pp. 356-65.CrossRefGoogle Scholar
  30. 30.
    J.T.H. Pearce: J. Mater. Sci. Lett., 1983, vol. 2, pp. 428-32.CrossRefGoogle Scholar
  31. 31.
    S. Liu, Y.F. Zhou, X.L. Xing, J.B. Wang, Y.L. Yang and Q.X. Yang: Mater. Lett., 2016, vol. 183, pp. 272-76.CrossRefGoogle Scholar
  32. 32.
    G.L.F. Powell and R.A. Carlson: J. Mater. Sci., 1994, vol. 29, pp. 4889-96.CrossRefGoogle Scholar
  33. 33.
    S.A. David and H.D. Brody: Metall. Trans., 1974, vol. 5, pp. 2309-16.CrossRefGoogle Scholar
  34. 34.
    Z.H. Jiang, Y.W. Dong, X. Geng and F.B. Liu: Electroslag Metallurgy, Science Press, Beijing, China, 2015, pp. 243.Google Scholar
  35. 35.
    F.L. Li, R. Fu, D. Feng, F.J. Yin and Z.L. Tian: Rare. Metal. Mat. Eng., 2016, vol. 45, pp. 1437-42.CrossRefGoogle Scholar
  36. 36.
    X.H. Wang and Y. Li: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 800-12.CrossRefGoogle Scholar
  37. 37.
    A. Mitchell: Perspective in Metallurgical Development Conference, Sheffield, England, 1984, pp. 89–98.Google Scholar
  38. 38.
    C.B. Shi, D.L. Zheng, S.H. Shin, J. Li and J.W. Cho: Int. J. Min. Met. Mater., 2017, vol. 24, pp. 18-24.CrossRefGoogle Scholar
  39. 39.
    A. Mitchell: Electric Furnace Steelmaking Conference, Warrendale, PA, 1985, p. 212.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology Beijing (USTB)BeijingChina
  2. 2.Yangjiang Shi Ba Zi Limited CompanyYangjiangChina

Personalised recommendations