Novel Approach to Studying Influences of Na2O and K2O Additions on Viscosity and Thermodynamic Properties of BF Slags

  • Zhi-Yu Chang
  • Ke-Xin Jiao
  • Xiao-Jun NingEmail author
  • Jian-Liang Zhang


The present work calculated the heat capacity, enthalpy change, and slag temperature of CaO–MgO–Al2O3–SiO2 slags after adding Na2O or K2O, and investigated the influences of Na2O and K2O on the slag viscosity under given temperatures and heat quantities. It was found that the slag viscosity decreases with the addition of Na2O and tends to increase with K2O additions at the same temperature. The heat capacity of the slag increases, while the enthalpy change decreases obviously with the increasing addition of Na2O or K2O. Under the constant heat quantity, an increase in content of Na2O or K2O of the slag leads to an appreciable increase in slag temperature, whereas the viscosity decreases significantly. Besides, the Na2O or K2O additions also help to stabilize the slag fluidity and lower energy consumption of blast furnace.



The authors appreciate the financial support from the National Science Foundation for Young Scientists of China (51704019), and thank the anonymous reviewers for valuable comments helping us improve the quality of the paper.


  1. 1.
    H. Kim, W.H. Kim, I. Sohn, and D.J. Min: Steel Res. Int, 2010, vol. 81, pp. 261–64.CrossRefGoogle Scholar
  2. 2.
    I. Sohn and D.J. Min: Steel Res. Int., 2012, vol. 83, pp. 611–30.CrossRefGoogle Scholar
  3. 3.
    H. Kim, H. Matsuura, F. Tsukihashi, W.L. Wang, D.J. Min, and I. Sohn: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 5–12.CrossRefGoogle Scholar
  4. 4.
    S. Sukenaga, N. Saito, K. Kawakami, and K. Nakashima: ISIJ Int., 2006, vol. 46, pp. 352–58.CrossRefGoogle Scholar
  5. 5.
    H. Kim, W.H. Kim, J.H. Park, and D.J. Min: Steel Res. Int, 2010, vol. 81, pp. 17–24.CrossRefGoogle Scholar
  6. 6.
    W.H. Kim, I. Sohn, and D.J. Min: Steel Res. Int, 2010, vol. 81, pp. 735–41.CrossRefGoogle Scholar
  7. 7.
    G.H. Zhang and K.C. Chou: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 841–48.CrossRefGoogle Scholar
  8. 8.
    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: CALPHAD, 2002, vol. 26, pp. 189–228.CrossRefGoogle Scholar
  9. 9.
    M.Y. Kou, S.L. Wu, X.D. Ma, L.X. Wang, M. Chen, Q.W. Cai, and B.J. Zhao: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1093–1102.CrossRefGoogle Scholar
  10. 10.
    A. Kondratiev and E. Jak: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 623–38.CrossRefGoogle Scholar
  11. 11.
    M. Suzuki and E. Jak: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1435–50.CrossRefGoogle Scholar
  12. 12.
    M. Suzuki and E. Jak: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1451–65.CrossRefGoogle Scholar
  13. 13.
    Barin, O. Knacke, and O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1977.CrossRefGoogle Scholar
  14. 14.
    I Barin: Thermochemical Data of Pure Substances, VCH, Weinheim, Germany, 1989.Google Scholar
  15. 15.
    R.C. Weast: Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, OH, 1974–1975, pp. D58–59.Google Scholar
  16. 16.
    JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 1985, vol. 14, suppl. 1.Google Scholar
  17. 17.
    G. Eriksson, A.D. Pelton: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 795–805.CrossRefGoogle Scholar
  18. 18.
    K.D. Kim: J. Am. Ceram. Soc., 1996, vol. 79, pp. 2422–28.CrossRefGoogle Scholar
  19. 19.
    Z.Y. Chang, K.X. Jiao, J.L. Zhang, X.J. Ning, and Z.Q. Liu: ISIJ Int., 2018, vol. 58, pp. 2173–79.CrossRefGoogle Scholar
  20. 20.
    R.Z. Xu, J.L. Zhang, W.X. Han, Z.Y. Chang, and K.X. Jiao: Ironmak Steelmak., 2018, in press.Google Scholar
  21. 21.
    B. Mysen: Contrib Mineral Petrol, 1997, vol. 127, 104–118.CrossRefGoogle Scholar
  22. 22.
    Y. Sasaki and K. Ishii: Tetsu-to-Hagane´, 2002, vol. 88, pp. 419–29.Google Scholar
  23. 23.
    G.H. Zhang, K.C. Chou, and K. Mills: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 698–706.CrossRefGoogle Scholar
  24. 24.
    A. Navrotsky, G. Peraudeau, P. McMillan, and J.P. Coutures: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 2039–47.CrossRefGoogle Scholar
  25. 25.
    F. Domine and B. Piriou: Am. Mineral., 1986, vol. 71, pp. 38–53.Google Scholar
  26. 26.
    G.H. Zhang, W.W. Zheng, and K.C. Chou: Metall. Mater. Trans. B, 2017, vol. 48B, pp.1134–38.CrossRefGoogle Scholar
  27. 27.
    Y.L. Zhen, G.H. Zhang, X.L. Tang, and K.C. Chou: Metall. Mater. Trans. B, 2014, vol. 45B, pp.123–130.CrossRefGoogle Scholar
  28. 28.
    G.H. Zhang and K.C. Chou: J. Min. Metall. B., 2012, vol. 48, pp. 1–10.CrossRefGoogle Scholar
  29. 29.
    K.J. Li, R. Khanna, M. Bouhadja, J.L. Zhang, Z. J. Liu, B.X. Su, T.J. Yang, V. Sahajwalla, C.V. Singh, and M. Barati: Chem. Eng. J, 2017, vol. 313, pp. 1184–93.CrossRefGoogle Scholar
  30. 30.
    J.B. Kim and I. Sohn: ISIJ Int., 2014, vol. 54, pp. 657–63.CrossRefGoogle Scholar
  31. 31.
    D.R. Rohindra, R.A. Lata, and R.K. Coll: Eur. J. Phys., 2012, vol.33, pp. 1457–64.CrossRefGoogle Scholar
  32. 32.
    T. Higo, S. Sukenaga, K. Kanehashi, H. Shibata, T. Osugi, N. Saito, and K. Nakashima: ISIJ Int., 2014, vol. 54, pp. 2039–44.CrossRefGoogle Scholar
  33. 33.
    J.O.M. Bockris and D.C. Lowe: Proc. R. Soc. Lond., 226A, 1954, pp. 423–35.Google Scholar
  34. 34.
    L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp.177–86.CrossRefGoogle Scholar
  35. 35.
    N. Sano: Advanced Physical Chemistry for Process Metallurgy, Academic Press, New York, NY, 1997, pp. 45–48.Google Scholar
  36. 36.
    Y. Waseda and J.M. Toguri: The Structure and Properties of Oxide Melts, World Scientific, Singapore, 1998.CrossRefGoogle Scholar
  37. 37.
    J.H. Park, D.J. Min, H.S. Song: ISIJ Int., 2002, vol. 42, pp.344–51.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Zhi-Yu Chang
    • 1
  • Ke-Xin Jiao
    • 1
  • Xiao-Jun Ning
    • 1
    Email author
  • Jian-Liang Zhang
    • 1
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Chemical EngineeringThe University of QueenslandSt LuciaAustralia

Personalised recommendations