Advertisement

Kinetics and Mechanisms of Dolime Dissolution in Steelmaking Slag

  • Elizaveta CheremisinaEmail author
  • Johannes Schenk
  • Ludwig Nocke
  • Alexander Paul
  • Gerald Wimmer
Article
  • 48 Downloads

Abstract

The kinetics of dolime dissolution containing 20 and 50 pct of magnesium oxide in steelmaking slags has been studied in a high-temperature experiment. The dissolution tests were carried out under static conditions at temperatures of between 1573 K and 1873 K (1300 °C to 1600 °C). Cylindrical samples of dolime were introduced into pre-melted slag at predetermined time intervals. The changes in mass and geometrical parameters of the samples, as well as CaO and MgO concentrations in the melt, were determined to calculate mass transfer and diffusion coefficients. The results revealed that the rate-limiting step in the process of dolime dissolution is diffusion. The increase in MgO content in the initial sample caused a drop in dolime dissolution rate and diffusion coefficients. The prediction of MgO solubility in steel slag, as well as the effect of slag basicity, was carried out using the thermodynamic software FactSage 7.1. In addition, the activation energy of diffusion has been calculated using the dependence of the logarithm of diffusion coefficients on the inverse temperature.

Notes

Acknowledgments

Financial support is gratefully acknowledged by K1-Met. K1-Met is a member of Competence Centers for Excellent Technologies (COMET) and is financially supported by the Austrian ministers BMVIT and, BMVITJ, the provinces of Upper Austria, Styria and Tyrol, SFG and Tiroler Zukunftsstiftung. COMET is managed by FFG (Austrian research promotion agency).

References

  1. 1.
    B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall international, London, 1993, pp. 150-175.Google Scholar
  2. 2.
    N. Dogan, G. A. Brooks and M. A. Rhamdhani: ISIJ Int., 2009, vol. 49, pp. 1474-82.CrossRefGoogle Scholar
  3. 3.
    R.J. Fruehan, Y. Li and L. Brabie: ISS Tech Conference, 2003, pp. 799-812.Google Scholar
  4. 4.
    T. Deng: Doctoral Thesis, Royal Institute of Technology, Stockholm, 2012, pp. 40–42.Google Scholar
  5. 5.
    T. Deng, J. Gran and D. Sichen: Steel Research Int., 2010, vol. 81, pp. 347–55.CrossRefGoogle Scholar
  6. 6.
    T. Hamano, M. Horibe and K. Ito: ISIJ Int., 2004, vol. 44, pp. 263-67.CrossRefGoogle Scholar
  7. 7.
    P. Williams, M. Sunderland and G. Briggs: Ironmaking Steelmaking, 1982, vol. 9, p. 150.Google Scholar
  8. 8.
    T. Hamano, S. Fukagai and F. Tsukihashi: ISIJ Int., 2006, vol. 46, pp. 490–95.CrossRefGoogle Scholar
  9. 9.
    J.W. Evans and C.A. Natalie: 3rd Int. Iron Steel Cong., 1978, p. 365.Google Scholar
  10. 10.
    G.J.W. Kor, L.J. Martonik and R.A. Miller: 5th Int. Iron Steel Cong., Iron Steel Inst., 1986, pp. 679–89.Google Scholar
  11. 11.
    J. Liu, M. Guo, P. Jones, F. Verhaeghe, B. Blanpain and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1961–72.CrossRefGoogle Scholar
  12. 12.
    C.A. Natalie: Ph.D. Thesis, University of California, Berkeley, 1978.Google Scholar
  13. 13.
    J. Yang, M. Kuwabara, T. Asano, A. Chuma and J. Du: ISIJ Int., 2007, vol. 47, pp. 1401–408.CrossRefGoogle Scholar
  14. 14.
    S. Amini, M. Brungs, S. Jahanshahi and O. Ostrovski: ISIJ Int., 2006, vol. 46, pp. 1554–59.CrossRefGoogle Scholar
  15. 15.
    S. Amini, M. Brungs, S. Jahanshahi and O. Ostrovski: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 773–80.CrossRefGoogle Scholar
  16. 16.
    M. Umakoshi, K. Mori and K. Kawai: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 532–39.CrossRefGoogle Scholar
  17. 17.
    N. Maruoka, A. Ishikawa, H. Shibata and S.-Y. Kitamura: Proc. of the 12th Unified International Technical Conference on Refractories, 2011, pp. 590–593.Google Scholar
  18. 18.
    Y. Satyoko and W. E. Lee: British Ceramic Transaction, 1999, vol. 98, pp. 261-65.CrossRefGoogle Scholar
  19. 19.
    A.G. Stromberg and D.P. Semchenko: Physical chemistry, Book for Chemical Special Schools, Visshaya Shkola, Moscow, 2003, pp. 320–323.Google Scholar
  20. 20.
    Factsage 7.1 - Thermfact Ltd (Montreal, Canada) and GTT technologies Aachen, Germany, Database: Fact53, FToxid, FSstel.Google Scholar
  21. 21.
    E. Cheremisina, J. Schenk, L. Nocke, A. Paul, G. Wimmer: ISIJ Int. 2017, vol. 57, pp. 304–13.CrossRefGoogle Scholar
  22. 22.
    F. Huang, J. Liu, N. Maruoka, S.-y. Kitamura, and A. Ishikawa: Int. J. Appl. Ceram. Technol., 2015, vol. 12, pp. 1239-44.CrossRefGoogle Scholar
  23. 23.
    N. Maruoka, A. Ishikawa, H. Shibata and S.-y. Kitamura: High Temperature Materials and Processes, 2012, vol. 32, pp. 1-10.Google Scholar
  24. 24.
    S.-y. Kitamura: ISIJ Int., 2017, vol.57, pp. 1670-76.CrossRefGoogle Scholar
  25. 25.
    S. Amini, M. Brungs and O. Ostrovski: International Conference on Molten Slags Fluxes and Salts, 2004, pp. 595–600.Google Scholar
  26. 26.
    M. Matsushima, S. Yadoomaru, K. Mori and Y.Kawai: Trans. Iron Steel Inst. Jpn., 1977, vol. 17, pp. 442–49.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Elizaveta Cheremisina
    • 1
    Email author
  • Johannes Schenk
    • 2
  • Ludwig Nocke
    • 3
  • Alexander Paul
    • 4
  • Gerald Wimmer
    • 5
  1. 1.K1-Met GmbHLinzAustria
  2. 2.Montanuniversität LeobenLeobenAustria
  3. 3.Voestalpine Stahl GmbHLinzAustria
  4. 4.Voestalpine Stahl GmbH DonawitzLeobenAustria
  5. 5.Primetals TechnologiesLinzAustria

Personalised recommendations