Advertisement

Characterization, Mechanism and Control Measures of V Segregation in Continuous Casting Billet of C-Mn Steel

  • Xiaoping MaEmail author
  • Dianzhong Li
Article
  • 31 Downloads

Abstract

To eliminate V segregation, which significantly deteriorates the homogeneity of continuous casting steel billets, V segregation in the C-Mn steel billet was observed by microscope, SEM and EDS. The formation mechanism and control measures for V segregation were proposed. Results show that many slim V segregation strips are distributed on an inverted conical surface and that most segregation strips start from the vertex of the inverted conical surface. A series of inverted conical surfaces containing V segregation strips periodically appears along the longitudinal direction of the billet. The microstructures in the V segregation strip are fine granular structures, while the microstructures outside the V segregation strip are coarse Widmanstätten. The V segregation strip also contains many inclusions and porosities. The formation mechanism for V segregation, which is illuminated by a physical simulation of Al-5wt pctCu alloy, is attributed to the fissure in the equiaxed dendritic network torn by solidification contraction. By controlling the percentage and distribution of equiaxed grains, the V segregation in the billet of C-Mn steel is completely eliminated.

Notes

References

  1. 1.
    Y. Ji, P. Lan, H. Geng, Q. He, C. Shang, J. Zhang: Steel Res Inter, 2018, vol. 89, 1700331.CrossRefGoogle Scholar
  2. 2.
    Committee of the iron and steel institute: J Iron Steel Inst, 1926, vol. 103, 39-176.Google Scholar
  3. 3.
    H. Brearley: J Iron Steel Inst, 1921, vol. 103, pp. 27-62.Google Scholar
  4. 4.
    K. Suzuki, T. Miyamoto: Trans Iron Steel Inst Jpn, 1974, vol. 14, pp. 296-305.Google Scholar
  5. 5.
    B.M. Larsen: Trans AIME, 1945, vol. 162, pp. 414-435.Google Scholar
  6. 6.
    S. Asai, I. Muchi: Trans Iron Steel Inst Jpn, 1978, vol. 18, pp.90-98.Google Scholar
  7. 7.
    A. Hultgren: J Iron Steel Inst, 1929, vol. 120, pp. 69-125.Google Scholar
  8. 8.
    A. Ludwig, M. Stefan-Kharicha, A. Kharicha, M. Wu: Metall Mater Tran A, 2017, vol. 48, pp. 2927-2931.CrossRefGoogle Scholar
  9. 9.
    M.C. Flemings: Scand J Metall, 1976, vol. 5, pp. 1-15.Google Scholar
  10. 10.
    R. Alberny, in Proc Cong “Continuous casting”, Buenos Aires, 1977, ILAFAGoogle Scholar
  11. 11.
    H. Tomono, Y. Hitomi, S. Ura, A. Teraguchi, K. Iwata, K. Yasumoto: Trans Iron Steel Inst Jpn, 1984, vol. 24, pp. 917-922.CrossRefGoogle Scholar
  12. 12.
    N. Shevchenko, H. Neumann-Heyme, C. Pickmann, E. Schaberger-Zimmermann, G. Zimmermann, K. Eckert, S. Eckert: Materials Science and Engineering, 2017, vol. 228, 012005.Google Scholar
  13. 13.
    T. Brune, K. Kortzak, D. Senk, N. Reuther, M. Schaperkotter: Steel Res Inter, 2015, vol. 86, pp. 33-39.CrossRefGoogle Scholar
  14. 14.
    TB. Abbott, IB. Hoyle, AS. Woodyatt: Steel Res, 1994, vol. 65, pp. 128-131.CrossRefGoogle Scholar
  15. 15.
    HB. Chen, MJ. Long, DF. Chen, T. Liu, HM. Duan: Int J Heat Mass Trans, 2018, vol. 126, pp. 843-853.CrossRefGoogle Scholar
  16. 16.
    R. Guan, C. Ji, MY. Zhu, SM. Deng: Metall Mater Tran B, 2018, vol. 49, pp. 2571-2583.CrossRefGoogle Scholar
  17. 17.
    SD. Wang, XB. Zhang, LF. Zhang, QQ. Wang: Steel Res Int, 2018, vol. 89, 1800263.CrossRefGoogle Scholar
  18. 18.
    X.P. Ma, D.Z. Li: International Journal of Cast Metals Research.  https://doi.org/10.1080/13640461.2018.1558965.

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations