Advertisement

Non-isothermal Reduction Kinetics of Iron During Vacuum Carbothermal Reduction of Ilmenite Concentrate

  • Huang Run
  • Lv Xiaodong
  • Wu Qinghui
  • Wu Qinzhi
  • Zhang JinzhuEmail author
Article
  • 7 Downloads

Abstract

The non-isothermal reduction kinetics and mechanism of iron during vacuum carbothermal reduction of ilmenite concentrate were investigated by X-ray diffraction, backscattered electron imaging, and energy-dispersive X-ray spectroscopy at temperatures from 1273 K to 1673 K (1000 °C to 1400 °C). The pressure dropped and the increasing trend of mass loss and metallization ratios slowed down when the temperature was higher than 1573 K (1300 °C). The reaction products were iron, Ti2O3, and silicate. Iron was mainly obtained by carbothermal reduction of FeTiO3 and FeTi2O5. The irons continued to nucleate, aggregate, and grow during the reduction process. Comprehensive consideration of Šatava–Šesták method and Coats–Redfern method, the apparent activation energy of the reduction process was 587.4 ± 2.98 kJ/mol, and the forms of both integral and differential for the mechanism function were G(a)= [(1−a)1/31]2 and f(a) = 3/2(1−a)4/3[(1−a)1/31]1, respectively.

Notes

Acknowledgments

The authors are especially grateful for the financial support from the National Natural Science Fund of China (No. 51404080, No. 51664003). The chemical compositions of all the samples were analyzed by Panzhihua Iron & Steel Research Institute, Pan Gang Group.

References

  1. 1.
    D.C. Li, D.L. Zhou, and H. Liu: Sponge Titanium Production of Magnesiothermy, 1st ed., Metallurgical Industry Press, Beijing, 2009, pp. 5-6.Google Scholar
  2. 2.
    W. Mo, G.Z. Deng, and F.C. Luo:Titanium Metallurgy, 2nd ed., Metallurgical Industry Press., Beijing, 1998, p. 124.Google Scholar
  3. 3.
    G.Z. Deng:Titanium Metallurgy, 1st ed., Metallurgical Industry Press., Beijing, 2010, p. 55.Google Scholar
  4. 4.
    S.S. Liu, Y.F. Guo, G.Z. Qiu, T.Jiang, and F. Chen: Transactions of Nonferrous Metals Society of China (English Edition), 2013, vol. 23, pp. 1174-78.Google Scholar
  5. 5.
    X. Wu, J.B. Zhang, H.J. Miao, E.D. Ye, and X.Y. Zhang: Iron Steel Vanadium Titanium, 2016, vol. 37, pp. 1-7.Google Scholar
  6. 6.
    Y.F. Guo, S.S. Liu, X.W. Ma, T. Jiang, and G.Z. Qiu: Transactions of Nonferrous Metals Society of China, 2010, vol. 20, pp. 2038-44.Google Scholar
  7. 7.
    R. Huang, X.W. Lv, C.G. Bai, Q.Y. Deng, and S.W. Ma: Can. Metall. Q., 2013, vol. 51, pp. 434-439.Google Scholar
  8. 8.
    B.B. Shao, W.Z. Ding, D.S. Tan, X.F. Shang, and S.Q. Guo: Hydrometallurgy of China, 2018, vol. 37, pp. 14-19.Google Scholar
  9. 9.
    W. Lv, C.G. Bai, X.W. Lv, K. Hu, X.M. Lv, J.Y. Xiang, B. Song: Powder Technol., 2018, vol. 340, pp. 354-61.Google Scholar
  10. 10.
    K. Zhang, X.W. Lv, R. Huang, B. Song, F. Xi: Metall. Trans. B., 2014, vol. 45, pp. 923-28.Google Scholar
  11. 11.
    M.A.R. Dewan, G. Zhang, and O. Ostrovski: ISIJ Int., 2010, vol. 50, pp. 647-53.Google Scholar
  12. 12.
    J.L. Li, B. Ma, Q.G. Yan, Y.F. Zhu, and K.J. Reid: Engineering Chemistry & Metallurgy, 1990, vol. 21, pp. 225-30.Google Scholar
  13. 13.
    N.J. Welham and J.S. Williams: Metall. Trans. B, 1999, vol. 30, pp. 1075-81.Google Scholar
  14. 14.
    H.P. Gou, G.H. Zhang, X.J. Hu, and G.Z. Zhou: Transactions of Nonferrous Metals Society of China (English Edition), 2017, vol. 27, pp. 1856-61.Google Scholar
  15. 15.
    W. Lv, X.W. Lv, J.Y. Xiang, J.S. Wang, X.M. Lv, C.G. Bai, B. Song: Int. J. Miner. Process., 2017, vol. 169, pp. 176-84.Google Scholar
  16. 16.
    Y. Wang and Z. Yuan: Int. J. of Min. Pro., 2006, vol. 81, pp. 133-40.Google Scholar
  17. 17.
    M.I. EI-Guindy and W.G. Davenport: Metall. Trans., 1970, vol. 1, pp. 1729-34.Google Scholar
  18. 18.
    Y.N. Dai and B. Yang: Vacuum Metallurgy of Nonferrous Metals, 2nd ed., Metallurgical Industry Press., Beijing, 2009, pp. 1-3.Google Scholar
  19. 19.
    R. Huang, P.S. Liu, X. Qian, and J.Z. Zhang: Vacuum, 2016, vol. 134, pp. 20-24.Google Scholar
  20. 20.
    R. Huang, P.S. Liu, J.Z. Zhang, and Y.H. Yue: Metallurgist, 2017, vol. 61, pp. 511-16.Google Scholar
  21. 21.
    R. Huang, P.S. Liu, Y.H. Yue, and J.Z. Zhang: Miner. Process. Extr. Metall. Rev., 2017, vol. 38, pp. 193-98.Google Scholar
  22. 22.
    M.J. Hu, R.R. Wei, M.L. Hu, L.Y. Wen and F.Q. Ying: JOM., 2018, vol. 70, pp. 1443-1448.Google Scholar
  23. 23.
    Y.S. Sun, Y.X. Han, X.C. Wei, P. Gao: J. Therm. Anal. Calorim., 2016, vol. 123, pp. 703-15.Google Scholar
  24. 24.
    X.M. Lv, W. Lv, Z.X. You, X.W. Lv and C.G. Bai: Powder Technol., 2018, vol. 340, pp. 495-501.Google Scholar
  25. 25.
    M.H. El-Sadek, H. M. Ahmed, K. El-Barawy, M. B. Morsi, H. El-Didamony, B. BjÖrkman: J. Therm. Anal. Calorim., 2017, vol. 1, pp. 1-9.Google Scholar
  26. 26.
    Y.R. Liu, J.L. Zhang, X.D. Xing, Z.J. Liu, X.L. Liu, N.Y. Li and Y.S. Shen: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2419-2427.Google Scholar
  27. 27.
    Y.H. Yue: Experimental study on vacuum carbon thermal reduction of ilmenite concentrate, Guizhou University., GuiYang, 2016, pp. 63-64.Google Scholar
  28. 28.
    C.W. Li, X.G. Si, X.G. Lu, S.Q. Guo, and W.Z. Ding: Metallurgical Analysis. 2011, vol. 31, pp. 40-44.Google Scholar
  29. 29.
    X. Fu, Y. Wang, and F. Wei: Metall. Trans. A, 2010, vol. 41, pp. 1338-1348.Google Scholar
  30. 30.
    T. Hu, X.W. Lv, C.G. Bai, Z. Lun, G. Qiu: Metall. Trans. B, 2013, vol. 44, pp. 252-260.Google Scholar
  31. 31.
    M.X. Huang, C.R. Zhou, X.W. Han: J. Therm. Anal. Calorim., 2013, vol. 113, pp. 589–93.Google Scholar
  32. 32.
    M. Otero, L.F. Calvo, M.V. Gil, A.I. García, A. Morán: Bioresour. Technol., 2008, vol. 99, pp. 6311–9.Google Scholar
  33. 33.
    R.Z. Hu, S.L. Gao, F.Q. Zhao, Q.Z. Shi, T.L. Zhang, and J.J. Zhang: Kinetics of Thermal Analysis, 2nd ed., Science Press., Beijing, 2008, pp. 54-55.Google Scholar
  34. 34.
    F. Šatava, J. Šesták: J. Them. Anal., 1975, vol. 8, pp. 477–89.Google Scholar
  35. 35.
    A.W. Coats, J.P. Redfern: II. J. Polym. Sci., 1965, vol. 3, pp. 917–20.Google Scholar
  36. 36.
    P. Li, Q.B. Yu, H.Q. Xie, Q. Qin, K. Wang: Energ. Fuels, 2013, vol. 27, pp. 4810–17.Google Scholar
  37. 37.
    P. Li, Q.B. Yu, Q. Qin, W. Lei: Ind. Eng. Chem. Res., 2012, vol. 51, pp. 15872–83.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Huang Run
    • 1
  • Lv Xiaodong
    • 1
  • Wu Qinghui
    • 1
  • Wu Qinzhi
    • 1
  • Zhang Jinzhu
    • 1
    Email author
  1. 1.School of Materials and MetallurgyGuiZhou UniversityGuiyangChina

Personalised recommendations