Mathematical Modelling of Gas–Liquid, Two-Phase Flows in a Ladle Shroud
Abstract
Nomenclature
- BCS
Bloom casting shroud
- C
Interface curvature
- Cµ
Empirical constant of the turbulence model
- C2
Constant
- DCN
Collector nozzle diameter
- \( D_{{{\text{CN}}_{\text{BCS}} }} \)
Collector nozzle diameter of BCS
- \( D_{{{\text{CN}}_{\text{SCS}} }} \)
Collector nozzle diameter of SCS
- Dsh
Shroud diameter
- \( D_{{{\text{sh}}_{\text{SCS}} }} \)
Diameter of slab casting shroud
- \( D_{{{\text{sh}}_{\text{BCS}} }} \)
Diameter of bloom casting shroud
- Fσ
Surface tension force per unit volume
- Frjet
Jet Froude number
- k
Turbulent kinetic energy
- Lsh
Length of the shroud
- Ljet
Free liquid jet length
- Ljet, BCS
Free liquid jet length in BCS
- Ljet,SCS
Free liquid jet length in SCS
- P
Dynamic pressure referenced to the local hydrostatic pressure
- QG
Gas flow rate
- QL
Liquid flow rate
- r
Radial distance from the centerline of the shroud
- Rsh
Radius of the shroud
- SCS
Slab casting shroud
- vi,m
Time averaged, mixture velocities in the ith direction
- vj,m
Time averaged, mixture velocities in jth direction
- \( \rho_{\text{L}} \)
Density of liquid
- \( \rho_{\text{G}} \)
Density of gas
- \( \sigma_{{}} \)
Surface tension
- \( \alpha_{\text{G}} \)
Critical gas flow rate
- λ
Scaling factor
- \( \rho_{m} \)
Mixture density
- \( \alpha_{1} \)
Volume fraction of phase 1
- \( \alpha_{2} \)
Volume fraction of phase 2
- \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{n} \)
Normal vector to the interface
- \( \delta_{\text{s}} \)
Dirac delta function
- \( \overrightarrow {{u_{\text{c}} }} \)
Velocity is applied normal to the interface
- Gk
Generation of turbulence kinetic energy
- σk
Turbulent Prandtl numbers for k
- σk
Turbulent Prandtl numbers for ɛ
- \( \mu_{\text{t}} \)
Turbulent viscosity
- \( \varepsilon \)
Dissipation rate of turbulent kinetic energy
Notes
Acknowledgment
The authors gratefully acknowledge Mr. Rohit K. Tiwari, a former graduate student in the Process and Steel research Laboratory, IIT Kanpur for full scale computational results presented in Figure 11(a).
References
- 1.Prince K. Singh and Dipak Mazumdar, Metallurgical and Materials Trans B, 2018, Vol.48, pp.1945-1962.CrossRefGoogle Scholar
- 2.Saikat Chatterjee, Donghui Li and Kinnor Chattpopadhyaya: Materials and Metallurgical Transactions B, 2018, 49B, pp 756-766.CrossRefGoogle Scholar
- 3.D Mazumdar, Prince K Singh, Rohit K Tiwari: ISIJ International, 2018, Vol.58, pp. 1545–1547.CrossRefGoogle Scholar
- 4.D.Mazumdar and J.W.Evans: Modeling of Steelmaking Processes, CRC Press, Boca Raton, 2009, pp. 217-220.CrossRefGoogle Scholar
- 5.H.G. Weller: Technical Report TR/HGW/04, Open CFD Ltd., 2008.Google Scholar
- 6.Laihua Wang, Hae-Geon Lee, Peter Hayes, Steel Research, 1995, 66, pp.279-286.CrossRefGoogle Scholar
- 7.L.T. Wang, Q.Y. Zhang, C.H. Deng and Z.B. Li, ISIJ Int., 2005, vol. 45, pp. 1138-44.CrossRefGoogle Scholar
- 8.R.K. Tiwari: M.Tech Thesis, IIT Kanpur, India, 2018.Google Scholar
- 9.K. E. Wardle and H. G. Weller, International Journal of chemical Engineering,2013 Vol.2013, pp.1-13.CrossRefGoogle Scholar
- 10.ANSYS® FLUENT, 18.0: Theory Guide, Chap. 4, December 2016.Google Scholar
- 11.A.K.Bin: Chemical Engineering Science, 1993, Vol.48, pp.3585-3630.CrossRefGoogle Scholar
- 12.G.M.Evans, G.J.Jameson and C.D.Reilly: Experimental and Thermal Fluid Sciences, 1996, Vol.12, pp.142-149.CrossRefGoogle Scholar
- 13.P.K. Singh: Unpublished Research, Indian Institute of Technology, Kanpur, 2018.Google Scholar
- 14.R.Guthrie: Engineering in Process Metallurgy, Clarendon Press, Oxford, UK,1989, pp.152-157.Google Scholar
- 15.MATLAB R2016a: Academic use, February 2016.Google Scholar