Advertisement

A CFD Study Assisted with Experimental Confirmation for Liquid Shape Control of Electromagnetically Levitated Bulk Materials

  • X. Cai
  • H. P. WangEmail author
  • M. X. Li
  • Y. H. Wu
  • B. Wei
Article
  • 12 Downloads

Abstract

Two types of optimized electromagnetic levitators were designed to achieve the free surface shape control of metallic melts as the combined results of the Lorentz force, sample gravity, and surface tension. The levitation behavior of bulk melts was investigated using computational fluid dynamics (CFD) modeling coupled with high-frequency electromagnetic field analysis and the arbitrary Lagrangian–Eulerian (ALE) method. The difference in the oscillation behavior between the solid and molten samples was explained by the damping of the electromagnetic induction and liquid viscosity. The motion of the mass center, melt shape, flow pattern, and Lorentz force in the levitated melt were determined within a wide excitation current range. With the increase in the applied current, the melt’s centroid position rose sharply in the area with low current but displayed a slow increase in the area with high current. Meanwhile, the stable shape of the bulk melt showed the typical transition from a long taper through a short taper and then into a rhombus. The internal flow pattern transformed from a simple double-loop structure to a complex configuration with three or four loops. The dependence of the deformation on the Bond number was analyzed in the two types of levitators. In addition, the stable shape and swing process of the bulk Al melt within the two types of electromagnetic levitation (EML) systems were quantitatively studied under protective inert gas conditions. The melt contour could be well described by the 10th Legendre polynomial function with a deviation of less than 0.5 pct.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51522102, 51474175, 51327901 and 51734008).

References

  1. 1.
    Y. H. Wu, J. Chang, W. L. Wang, L. Hu, S. J. Yang and B. Wei, Acta Mater., 2017, vol. 129, pp. 366-377.CrossRefGoogle Scholar
  2. 2.
    L. Gao, Z. Shi, Y. Yang, D. Li, G. Zhang, A. McLean and K. Chattopadhyay, Metall. Mater. Trans. B, 2018, vol. 49, pp. 1985–1994.CrossRefGoogle Scholar
  3. 3.
    J. E. Rodriguez, C. Kreischer, T. Volkmann and D. M. Matson, Acta Mater., 2017, vol. 122, pp. 431-437.CrossRefGoogle Scholar
  4. 4.
    J. Brillo and I. Egry, Int. J. Thermophys., 2003, vol. 24, pp. 1155-1170.CrossRefGoogle Scholar
  5. 5.
    S. I. Bakhtiyarov and D. A. Siginer, Fluid Dyn. Mater. Process., 2008, vol. 4, pp. 163-184.Google Scholar
  6. 6.
    H. P. Wang, C. H. Zheng, P. F. Zou, S. J. Yang, L. Hu and B. Wei, J. Mater. Sci. Technol., 2018, vol. 34, pp. 436-439.CrossRefGoogle Scholar
  7. 7.
    S. Krishnan, G. P. Hansen, R. H. Hauge and J. L. Margrave, Metall. Trans. A, 1988, vol. 19, pp. 1939-1943.CrossRefGoogle Scholar
  8. 8.
    G. Lohofer and S. Schneider: High Temp. High Press., 2015, vol. 44, pp. 147–62.Google Scholar
  9. 9.
    E. C. Okress, D. M. Wroughton, G. Comenetz, P. H. Brace and J. C. R. Kelly, J. Appl. Phys., 1952, vol. 23, pp. 545-552.CrossRefGoogle Scholar
  10. 10.
    J. Lee, X. Xiao, D. M. Matson and R. W. Hyers, Metall. Mater. Trans. B, 2015, vol. 46, pp. 199-207.CrossRefGoogle Scholar
  11. 11.
    S. Spitans: in Department of Physics, University of Latvia, 2015.Google Scholar
  12. 12.
    A. Bansal, P. Chapelle, Y. Delannoy, E. Waz, P. Le Brun and J. P. Bellot, Metall. Mater. Trans. B, 2015, vol. 46, pp. 2096-2109.CrossRefGoogle Scholar
  13. 13.
    R. W. Hyers, Meas. Sci. Technol., 2005, vol. 16, pp. 394-401.CrossRefGoogle Scholar
  14. 14.
    V. Bojarevics and R. W. Hyers, J. O. M., 2012, vol. 64, pp. 1089-1096.CrossRefGoogle Scholar
  15. 15.
    K. Pericleous, V. Bojarevics, G. Djambazov, R. A. Harding and M. Wickins, Appl. Math. Model., 2006, vol. 30, pp. 1262-1280.CrossRefGoogle Scholar
  16. 16.
    S. R. Berry, R. W. Hyers, L. M. Racz and B. Abedian, Int. J. Thermophys., 2005, vol. 26, pp. 1565-1581.CrossRefGoogle Scholar
  17. 17.
    S. Spitans, E. Baake, A. Jakovics and H. Franz, Int. J. Appl. Electrom., 2017, vol. 53, pp. S61-S66.Google Scholar
  18. 18.
    L. Feng and W. Shi, Int. J. Heat. Mass. Tran., 2018, vol. 122, pp. 69-77.CrossRefGoogle Scholar
  19. 19.
    G. Yoshikawa, K. Hirata and F. Miyasaka, IEEE T. Magn., 2011, vol. 47, pp. 1394-1397.CrossRefGoogle Scholar
  20. 20.
    K. Yang, F. Hong and P. Cheng, Int. J. Heat. Mass. Tran., 2014, vol. 70, pp. 409-420.CrossRefGoogle Scholar
  21. 21.
    S. Ganesan, J. Comput. Phys., 2015, vol. 301, pp. 178-200.CrossRefGoogle Scholar
  22. 22.
    V. Bojarevics and K. Pericleous, ISIJ Int., 2003, vol. 43, pp. 890-898.CrossRefGoogle Scholar
  23. 23.
    B. O. Ciocirlan, D. G. Beale and R. A. Overfelt, J. Sound Vib., 2001, vol. 242, pp. 559-575.CrossRefGoogle Scholar
  24. 24.
    V. Shatrov, J. Priede and G. Gerbeth, Phys. Fluids, 2003, vol. 15, p. 668.CrossRefGoogle Scholar
  25. 25.
    X. Cai, H. P. Wang, P. Lü and B. Wei, Metall. Mater. Trans. B, 2018, vol. 49, pp. 2252-2260.CrossRefGoogle Scholar
  26. 26.
    M. J. Assael, K. E. Kakosimos, R. M. Banish, J. Brillo, I. Egry, R. F. Brooks, P. N. Quested, K. C. Mills, A. Nagashima and Y. Sato, J. Phys. Chem. Ref. Data, 2006, vol. 35, pp. 285-300.CrossRefGoogle Scholar
  27. 27.
    J. M. Molina, R. Voytovych, E. Louis and N. Eustathopoulos, Int. J. Adhes. Adhes., 2007, vol. 27, pp. 394-401.CrossRefGoogle Scholar
  28. 28.
    W. Brisley and B. S. Thornton, Br. J. Appl. Phys., 1963, vol. 14, pp. 682-686.CrossRefGoogle Scholar
  29. 29.
    P. Chapelle, A. Jardy, D. Ablitzer, Y. M. Pomarin and G. M. Grigorenko, J. Mater. Sic., 2008, vol. 43, pp. 3001-3008.CrossRefGoogle Scholar
  30. 30.
    L. Feng and W. Y. Shi, ISIJ Int., 2016, vol. 56, 50–56.CrossRefGoogle Scholar
  31. 31.
    S. P. Song and B. Q. Li, Int. J. Num. Meth. Eng., 1999, vol. 44, pp. 1055-1077.CrossRefGoogle Scholar
  32. 32.
    B. Q. Li, Int. J. Eng. Sci., 1994, vol. 32, pp. 45-67.CrossRefGoogle Scholar
  33. 33.
    W. H. Hager, J. Hydraul. Res., 2012, vol. 50, pp. 3-9.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • X. Cai
    • 1
  • H. P. Wang
    • 1
    Email author
  • M. X. Li
    • 1
  • Y. H. Wu
    • 1
  • B. Wei
    • 1
  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anP.R. China

Personalised recommendations