Sulfidation and Sulfur Fixation of Jarosite Residues During Reduction Roasting
- 22 Downloads
Abstract
This study investigated the sulfidation and sulfur fixation of jarosite residues during reduction roasting in the presence of carbon. The effects of roasting temperature and carbon dosage were investigated based on thermodynamic calculation. The results indicated that more than 98 pct of zinc contained in the residue was converted into zinc sulfides, and more than 91 pct of sulfur was fixed in the roasted residue. Carbon addition promoted not only the sulfidation of zinc but also the fixation of sulfur, thereby eliminating SO2 emission. The growth of sulfide particles was strongly influenced by roasting temperature. The size of sulfide particles significantly increased when the temperature was above 1173 K (900 °C) because of the formation of a liquid phase during the roasting process. However, high temperature could increase the consumption of carbon powder.
Notes
Acknowledgments
The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Grant Nos. 51804342, 51874356, and 51604302), the Provincial Science and Technology Leader (Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources, Grant No. 2016RS2016), the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources, the Innovation Driven Plan of Central South University (Grant No. 2015CX005), the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources (Grant No. 2018TP1002), the Innovation Project for Postgraduates of Central South University (Grant No. 2018zzts792), and the Scientific Research Starting Foundation of Central South University (Grant No. 218041). The authors BZ and LZ contributed equally to this work.
References
- 1.E. Rudnik, G. Wloch, and L. Szatan: Miner. Metall. Proc., 2018, vol. 35, pp. 69–76.Google Scholar
- 2.M. John, S. Heuss-Assbichler, and A. Ullrich: Int. J. Environ. Sci. Technol., 2016, vol. 13, pp. 2127–34.CrossRefGoogle Scholar
- 3.S. Luis Suarez-Gomez, M. Luisa Sanchez, F. Blanco, J. Ayala, and F.J. de Cos Juez: J. Hazard. Mater., 2017, vol. 336, pp. 168–73.Google Scholar
- 4.M. Sethurajan, D. Huguenot, R. Jain, P.N.L. Lens, H.A. Horn, L.H.A. Figueiredo, and E.D. van Hullebusch: J. Hazard. Mater., 2017, vol. 324, pp. 71–82.CrossRefGoogle Scholar
- 5.J. Han, W. Liu, W. Qin, B. Peng, K. Yang, and Y. Zheng: J. Ind. Eng. Chem., 2015, vol. 22, pp. 272–79.CrossRefGoogle Scholar
- 6.J.C. Balarini, L.D.O. Polli, T.L. Santos Miranda, R.M. Zica De Castro, and A. Salum: Miner. Eng., 2008, vol. 21, pp. 100–10.Google Scholar
- 7.J. Han, W. Liu, W. Qin, K. Yang, D. Wang, and H. Luo: Sep. Purif. Technol., 2015, vol. 154, pp. 263–70.CrossRefGoogle Scholar
- 8.F. Zhang, C. Wei, Z. Deng, C. Li, X. Li, and M. Li: Trans. Nonferr. Met. Soc., 2016, vol. 26, pp. 2495–2501.CrossRefGoogle Scholar
- 9.M. Saravanan and T.C.S. Girisun: Appl. Surf. Sci., 2017, vol. 392, pp. 904–11.CrossRefGoogle Scholar
- 10.J. Han, W. Liu, W. Qin, Y. Zheng, and H. Luo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 686–93.CrossRefGoogle Scholar
- 11.J. Gao, M. Zhang, F. Cheng, and M. Guo: Hydrometallurgy, 2017, vol. 173, pp. 98–105.CrossRefGoogle Scholar
- 12.M. Ye, P. Yan, S. Sun, D. Han, X. Xiao, L. Zheng, S. Huang, Y. Chen, and S. Zhuang: Chemosphere, 2017, vol. 168, pp. 1115–25.CrossRefGoogle Scholar
- 13.W. Liu, J.W. Han, W.Q. Qin, L.Y. Chai, D.K. Hou, and Y. Kong: Can. Metall. Q., 2014, vol. 53, pp. 176–82.CrossRefGoogle Scholar
- 14.X. Ren, Q. Wei, S. Hu, and S. Wei: J. Hazard. Mater., 2010, vol. 181, pp. 908–15.CrossRefGoogle Scholar
- 15.C. Su, W. Zhang, E. Ghali, and G. Houlachi: J. Appl. Electrochem., 2017, vol. 47, pp. 941–58.CrossRefGoogle Scholar
- 16.M. Gnanavel, V. Pralong, O.I. Lebedev, V. Caignaert, P. Bazin, and B. Raveau: Chem. Mater., 2014, vol. 26, pp. 4521–27.CrossRefGoogle Scholar
- 17.S. Ju, Y. Zhang, Y. Zhang, P. Xue, and Y. Wang: J. Hazard. Mater., 2011, vol. 192, pp. 554–58.CrossRefGoogle Scholar
- 18.A.A. Gonzalez-Ibarra, F. Nava-Alonso, A. Uribe-Salas, and E.N. Castillo-Ventureno: Can. Metall. Q., 2016, vol. 55, pp. 448–54.CrossRefGoogle Scholar
- 19.B. Nazari, E. Jorjani, H. Hani, Z. Manafi, and A. Riahi: Trans. Nonferr. Met. Soc., 2014, vol. 24, pp. 1152–60.CrossRefGoogle Scholar
- 20.H.E.A. Brand, N.V.Y. Scarlett, and I.E. Grey: J. Appl. Crystallogr., 2012, vol. 45, pp. 535–45.CrossRefGoogle Scholar
- 21.F. Chowdhury and T.V. Ojumu: Hydrometallurgy, 2014, vol. 141, pp. 36–42.CrossRefGoogle Scholar
- 22.H. Crabbe, N. Fernandez, and F. Jones: J. Cryst. Growth, 2015, vol. 416, pp. 28–33.CrossRefGoogle Scholar
- 23.I.A. Reyes, F. Patino, M.U. Flores, T. Pandiyan, R. Cruz, E.J. Gutierrez, M. Reyes, and V.H. Flores: Hydrometallurgy, 2017, vol. 167, pp. 16–29.CrossRefGoogle Scholar
- 24.M. Singh, V.J. Rajesh, K.S. Sajinkumar, K. Sajeev, and S.N. Kumar: Spectrochim. Acta, 2016, vol. 168, pp. 86–97.CrossRefGoogle Scholar
- 25.H. Spratt, L. Rintoul, M. Avdeev, and W. Martens: J. Therm. Anal. Calorim., 2014, vol. 115, pp. 101–09.CrossRefGoogle Scholar
- 26.A.L. Riley, S.E. Pepper, A.J. Canner, S.F. Brown, and M.D. Ogden: Sep. Sci. Technol., 2018, vol. 53, pp. 22–35.CrossRefGoogle Scholar
- 27.M. Kerolli-Mustafa, H. Fajkovic, S. Roncevic, and L. Curkovic: J. Geochem. Explor., 2015, vol. 148, pp. 161–68.CrossRefGoogle Scholar
- 28.H. Vu, J. Jandova, and T. Hron: Hydrometallurgy, 2010, vol. 101, pp. 1–06.CrossRefGoogle Scholar
- 29.S.K. Agarwal, A. Pahuja, M.M. Ali, B.K. Singh, and S. Duggal: Adv. Cem. Res., 2015, vol. 27, pp. 248–58.CrossRefGoogle Scholar
- 30.C. Liu, S.H. Ju, L.B. Zhang, C. Srinivasakannan, J.H. Peng, T.Q.X. Le, and Z.Y. Guo: Can. Metall. Q., 2017, vol. 56, pp. 1–9.CrossRefGoogle Scholar
- 31.H. Han, W. Sun, Y. Hu, B. Jia, and H. Tang: J. Hazard. Mater., 2014, vol. 278, pp. 49–54.CrossRefGoogle Scholar
- 32.P. Asokan, M. Saxena, and S.R. Asolekar: Mater. Charact., 2010, vol. 61, pp. 1342–55.CrossRefGoogle Scholar
- 33.J. Han, W. Liu, D. Wang, F. Jiao, and W. Qin: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 344–54.CrossRefGoogle Scholar
- 34.Y. Ke, L. Chai, X. Min, C. Tang, B. Zhou, J. Chen, and C. Yuan: Miner. Eng., 2015, vol. 74, pp. 68–78.CrossRefGoogle Scholar
- 35.Y. Ke, X. Min, L. Chai, B. Zhou, and K. Xue: Hydrometallurgy, 2016, vol. 161, pp. 166–73.CrossRefGoogle Scholar
- 36.J. Han, W. Liu, D. Wang, F. Jiao, T. Zhang, and W. Qin: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2400–10.CrossRefGoogle Scholar
- 37.S.V. Lakshman, S. Mohan, E.L. Dreizin, and M. Schoenitz: J. Therm. Anal. Calorim., 2014, vol. 115, pp. 609–20.CrossRefGoogle Scholar
- 38.H. Xu, Y. Zhao, S.C. Vogel, D.D. Hickmott, L.L. Daemen, and M.A. Hartl: Phys. Chem. Miner., 2010, vol. 37, pp. 73–82.CrossRefGoogle Scholar
- 39.W. Liu, J. Xu, J. Han, F. Jiao, W. Qin, and Z. Li: ACS Sustain. Chem. Eng., 2018. https://doi.org/10.1021/acssuschemeng.8b03382
- 40.W. Liu, X. Zhong, J. Han, W. Qin, T. Liu, C. Zhao, and Z. Chang: ACS Sustain. Chem. Eng., 2018. https://doi.org/10.1021/acssuschemeng.8b04939