Evolution Mechanism of Inclusions in Medium-Manganese Steel by Mg Treatment with Different Aluminum Contents
- 21 Downloads
Abstract
To investigate the effect of magnesium addition on the evolution of inclusions in medium-manganese steel with different aluminum contents, both thermodynamic calculation and high-temperature simulation experiments were carried out in the present work. The in situ observation experiments were used to clarify the related evolution process of inclusions. The samples taken from the melts were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The compositions of steel were determined by inductively coupled plasma-optical emission spectrometer. The results show that the aluminum content in steel has a certain influence on the magnesium content, under the same conditions, magnesium content increases with increasing aluminum content. The inclusions transformed from MnO·Al2O3 to Al2O3 when the aluminum content was higher than 0.0076 mass pct. After magnesium treatment, the inclusions gradually transformed into MgO·Al2O3, and the MgO/Al2O3 mole ratio in inclusions decreased with the increase of aluminum content. The diameter of the inclusions decreased, and number density of inclusions increased in steel after magnesium addition. The phenomenon that large-sized cluster-like Al2O3 inclusions transform into finely dispersed Mg-containing inclusions was firstly observed in situ by confocal laser scanning microscope.
Notes
Acknowledgments
This work was financially supported by the National Key R&D Program of China (No. 2017YFC0805100), National Natural Science Foundation of China (No. 51674069), National Natural Science Foundation of China (No. 51874082).
References
- 1.B.C.D. Cooman: Curr. Opin. Solid State Mat. Sci., 2004, vol. 8, pp. 285-303.CrossRefGoogle Scholar
- 2.P.J. Jacques: Curr. Opin. Solid State Mat. Sci., 2004, vol. 8, pp. 259-265.CrossRefGoogle Scholar
- 3.C.H. Min, J.M. Koo, J.K. Lee, W.H. Si and K.T. Park: Mater. Sci. Eng. A, 2013, vol. 586, pp. 276-283.CrossRefGoogle Scholar
- 4.A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds and M.J. Santofimia: Scr. Mater., 2009, vol. 61, pp. 149-152.CrossRefGoogle Scholar
- 5.P. Xie, M. Han, C.L. Wu, Y.Q. Yin, K. Zhu, R.H. Shen and J.H. Chen: Mater. Des., 2017, vol. 127, pp. 1-7.CrossRefGoogle Scholar
- 6.S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh and H.N. Han: Scr. Mater., 2013, vol. 68, pp. 365-369.CrossRefGoogle Scholar
- 7.K.H. Kwon, I.C. Yi, Y. Ha, K.K. Um, J.K. Choi, K. Hono, K. Oh-Ishi and N.J. Kim: Scr. Mater., 2013, vol. 69, pp. 420-423.CrossRefGoogle Scholar
- 8.J.H. Park, D.J. Kim and D.J. Min: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2316-2324.CrossRefGoogle Scholar
- 9.K. Wasai, K. Mukai and A. Miyanaga: ISIJ Int., 2002, vol. 42, pp. 459-466.CrossRefGoogle Scholar
- 10.R. Dekkers, B. Blanpain, P. Wollants, F. Haers, C. Vercruyssen and B. Gommers: Ironmak. Steelmak., 2002, vol. 29, pp. 437-444.CrossRefGoogle Scholar
- 11.R. Takata, J. Yang and M. Kuwabara: ISIJ Int., 2007, vol. 47, pp. 1379-1386.CrossRefGoogle Scholar
- 12.J. Shan, K. Okumura, M. Kuwabara and M. Sano: Tetsu-to-Hagane, 2002, vol. 88, pp. 256-263.CrossRefGoogle Scholar
- 13.H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 14-21.CrossRefGoogle Scholar
- 14.W.Z. Mu, N. Dogan, and K.S. Coley: J. Mater. Sci., 2018, vol. 53, pp. 13203–15.CrossRefGoogle Scholar
- 15.H.B. Yin, H. Shibata, T. Emi and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936-945.CrossRefGoogle Scholar
- 16.H. Mu, T. Zhang, L. Yang, R.R. Xavier, R.J. Fruehan and B.A. Webler: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1-9.Google Scholar
- 17.X.W. Chen: Lian Gang Guo Cheng de Tuo Yang (in Chinese), 1st ed., Metallurgical Industry Press, BeiJing, 1991, pp. 85.Google Scholar
- 18.H. Ohta and H. Suito: ISIJ Int., 1996, vol. 36, pp. 983-990.CrossRefGoogle Scholar
- 19.L.F. Zhang, Y. Ren, H.J. Duan, W. Yang and L.Y. Sun: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1809-1825.CrossRefGoogle Scholar
- 20.H. Itoh, M. Hino and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28, pp. 953-956.CrossRefGoogle Scholar
- 21.V. D. Eisenhüttenleute: Slag atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 44.Google Scholar
- 22.K. Fujii, T. Nagasaka and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059-1066.CrossRefGoogle Scholar
- 23.T.S. Zhang, D.Y. Wang, C.W. Liu, M.F. Jiang, L. Ming, B. Wang and S.X. Zhang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 99-103.CrossRefGoogle Scholar
- 24.H. Wang, J. Li, C.B. Shi and J. Li: Ironmak. Steelmak., 2016, vol. 44, pp. 128-133.CrossRefGoogle Scholar
- 25.Z.H. Jiang, C. Wang, W. Gong and H.D. Wang: Ironmak. Steelmak., 2015, vol. 42, pp. 669-674.CrossRefGoogle Scholar
- 26.J. Fu, Y.G. Yu, A.R. Wang, B.P. Chen and W.S. Sun: J. Mater. Sci. Technol., 1998, vol. 14, pp. 53-56.CrossRefGoogle Scholar