Advertisement

Evolution Mechanism of Inclusions in Medium-Manganese Steel by Mg Treatment with Different Aluminum Contents

  • Zhe Yu
  • Chengjun LiuEmail author
Article
  • 21 Downloads

Abstract

To investigate the effect of magnesium addition on the evolution of inclusions in medium-manganese steel with different aluminum contents, both thermodynamic calculation and high-temperature simulation experiments were carried out in the present work. The in situ observation experiments were used to clarify the related evolution process of inclusions. The samples taken from the melts were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The compositions of steel were determined by inductively coupled plasma-optical emission spectrometer. The results show that the aluminum content in steel has a certain influence on the magnesium content, under the same conditions, magnesium content increases with increasing aluminum content. The inclusions transformed from MnO·Al2O3 to Al2O3 when the aluminum content was higher than 0.0076 mass pct. After magnesium treatment, the inclusions gradually transformed into MgO·Al2O3, and the MgO/Al2O3 mole ratio in inclusions decreased with the increase of aluminum content. The diameter of the inclusions decreased, and number density of inclusions increased in steel after magnesium addition. The phenomenon that large-sized cluster-like Al2O3 inclusions transform into finely dispersed Mg-containing inclusions was firstly observed in situ by confocal laser scanning microscope.

Notes

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2017YFC0805100), National Natural Science Foundation of China (No. 51674069), National Natural Science Foundation of China (No. 51874082).

References

  1. 1.
    B.C.D. Cooman: Curr. Opin. Solid State Mat. Sci., 2004, vol. 8, pp. 285-303.CrossRefGoogle Scholar
  2. 2.
    P.J. Jacques: Curr. Opin. Solid State Mat. Sci., 2004, vol. 8, pp. 259-265.CrossRefGoogle Scholar
  3. 3.
    C.H. Min, J.M. Koo, J.K. Lee, W.H. Si and K.T. Park: Mater. Sci. Eng. A, 2013, vol. 586, pp. 276-283.CrossRefGoogle Scholar
  4. 4.
    A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds and M.J. Santofimia: Scr. Mater., 2009, vol. 61, pp. 149-152.CrossRefGoogle Scholar
  5. 5.
    P. Xie, M. Han, C.L. Wu, Y.Q. Yin, K. Zhu, R.H. Shen and J.H. Chen: Mater. Des., 2017, vol. 127, pp. 1-7.CrossRefGoogle Scholar
  6. 6.
    S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh and H.N. Han: Scr. Mater., 2013, vol. 68, pp. 365-369.CrossRefGoogle Scholar
  7. 7.
    K.H. Kwon, I.C. Yi, Y. Ha, K.K. Um, J.K. Choi, K. Hono, K. Oh-Ishi and N.J. Kim: Scr. Mater., 2013, vol. 69, pp. 420-423.CrossRefGoogle Scholar
  8. 8.
    J.H. Park, D.J. Kim and D.J. Min: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2316-2324.CrossRefGoogle Scholar
  9. 9.
    K. Wasai, K. Mukai and A. Miyanaga: ISIJ Int., 2002, vol. 42, pp. 459-466.CrossRefGoogle Scholar
  10. 10.
    R. Dekkers, B. Blanpain, P. Wollants, F. Haers, C. Vercruyssen and B. Gommers: Ironmak. Steelmak., 2002, vol. 29, pp. 437-444.CrossRefGoogle Scholar
  11. 11.
    R. Takata, J. Yang and M. Kuwabara: ISIJ Int., 2007, vol. 47, pp. 1379-1386.CrossRefGoogle Scholar
  12. 12.
    J. Shan, K. Okumura, M. Kuwabara and M. Sano: Tetsu-to-Hagane, 2002, vol. 88, pp. 256-263.CrossRefGoogle Scholar
  13. 13.
    H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 14-21.CrossRefGoogle Scholar
  14. 14.
    W.Z. Mu, N. Dogan, and K.S. Coley: J. Mater. Sci., 2018, vol. 53, pp. 13203–15.CrossRefGoogle Scholar
  15. 15.
    H.B. Yin, H. Shibata, T. Emi and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936-945.CrossRefGoogle Scholar
  16. 16.
    H. Mu, T. Zhang, L. Yang, R.R. Xavier, R.J. Fruehan and B.A. Webler: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1-9.Google Scholar
  17. 17.
    X.W. Chen: Lian Gang Guo Cheng de Tuo Yang (in Chinese), 1st ed., Metallurgical Industry Press, BeiJing, 1991, pp. 85.Google Scholar
  18. 18.
    H. Ohta and H. Suito: ISIJ Int., 1996, vol. 36, pp. 983-990.CrossRefGoogle Scholar
  19. 19.
    L.F. Zhang, Y. Ren, H.J. Duan, W. Yang and L.Y. Sun: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1809-1825.CrossRefGoogle Scholar
  20. 20.
    H. Itoh, M. Hino and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28, pp. 953-956.CrossRefGoogle Scholar
  21. 21.
    V. D. Eisenhüttenleute: Slag atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 44.Google Scholar
  22. 22.
    K. Fujii, T. Nagasaka and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059-1066.CrossRefGoogle Scholar
  23. 23.
    T.S. Zhang, D.Y. Wang, C.W. Liu, M.F. Jiang, L. Ming, B. Wang and S.X. Zhang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 99-103.CrossRefGoogle Scholar
  24. 24.
    H. Wang, J. Li, C.B. Shi and J. Li: Ironmak. Steelmak., 2016, vol. 44, pp. 128-133.CrossRefGoogle Scholar
  25. 25.
    Z.H. Jiang, C. Wang, W. Gong and H.D. Wang: Ironmak. Steelmak., 2015, vol. 42, pp. 669-674.CrossRefGoogle Scholar
  26. 26.
    J. Fu, Y.G. Yu, A.R. Wang, B.P. Chen and W.S. Sun: J. Mater. Sci. Technol., 1998, vol. 14, pp. 53-56.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education)Northeastern UniversityShenyangP.R. China
  2. 2.School of MetallurgyNortheastern UniversityShenyangP.R. China

Personalised recommendations