Influence of TiH2 on Interfacial Reaction Features Between Cubic Boron Nitride and Cu-Sn-Ti Active Filler Metals

  • Yonggang Fan
  • Junxiang Fan
  • Cong WangEmail author
Topical Collection: 2019 Metallurgical Processes Workshop for Young Scholars
Part of the following topical collections:
  1. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2019)
  2. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2019)


Cubic boron nitride (CBN) grains are brazed by Cu-Sn-Ti filler metal in vacuum at 1223 K. Wetting behaviors, reaction layer features, and elemental distribution characteristics have been systematically investigated through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The results show that when the TiH2 content is 5 wt pct, virtually no sharp-edged, partially coated, and uncoated CBN grains can be observed, indicating that adequate wetting could be achieved. Moreover, a continuous reaction layer with uniform thickness (1.30 μm) consisting of TiN, TiB2, and TiB is obtained, which indicates that large numbers of TiN, TiB2, and TiB compounds could have been formed at the interface. However, when the TiH2 content exceeds 5 wt pct, the thickness of the reaction layer is no longer significantly expanding and excessive Ti present in the matrix will lower the volume percentage of Cu3Sn1 phase, which will reduce the bonding strength of the brazing samples. Wear tests indicate that the minimum weight loss also occurs at 5 wt pct TiH2.



The authors gratefully acknowledge the National Natural Science Foundation of China (Grant Nos. 51622401, 51628402, 51861130361, 51861145312, and 51850410522), Newton Advanced Fellowship by Royal Society (Grant No. RP12G0414), Research Fund for Central Universities (Grant No. N172502004), National Key Research and Development Program of China (Grant No. 2016YFB0300602), and Global Talents Recruitment Program endowed by the Chinese Government for their financial support. We also thank the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (Grant No. SKLSP201805).


  1. 1.
    R. Cai and W.B. Rowe: Int. J. Mach. Tools Manu., 2004, vol. 44, pp. 1391–1402.CrossRefGoogle Scholar
  2. 2.
    M.J. Jackson, C.J. Davis, M.P. Hitchiner, and B. Mills: J. Mater. Process. Technol., 2001, vol. 110, pp. 78–88.CrossRefGoogle Scholar
  3. 3.
    M.W. Cook and P.K. Bossom: Int. J. Refract. Met. Hard Mater., 2000, vol. 18, pp. 147–52.CrossRefGoogle Scholar
  4. 4.
    Y. Sahin and A.R. Motorcu: Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 84–90.CrossRefGoogle Scholar
  5. 5.
    H.M. Lin, Y.S. Liao, and C.C. Wei: J. Manuf. Sci. Produc., 2015, vol. 264, pp. 679–84.Google Scholar
  6. 6.
    X. Xu, Y. Yu, and H. Huang: Wear, 2003, vol. 255, pp. 1421–26.CrossRefGoogle Scholar
  7. 7.
    Y. Wang, Z.Z. Duan, G. Chen, Q.Y. Jiang, W. Dong, and K. Lei: Vacuum, 2017, 145, 30–38CrossRefGoogle Scholar
  8. 8.
    W.F. Ding, Q. Miao, J.H. Xu, Z.Z. Chen, C.Y. Yang, and Y.C. Fu: Int. J. Adv. Manuf. Technol., 2013, vol. 68, pp. 249–55.CrossRefGoogle Scholar
  9. 9.
    J. Angseryd, M. Elfwing, E. Olsson, and H.O. Andrén: Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 249–55.CrossRefGoogle Scholar
  10. 10.
    W.F. Ding, J.H. Xu, Z.Z. Chen, Q. Miao, C.Y. Yang: Mater. Sci. Eng. A, 2013, 559, 629–34.CrossRefGoogle Scholar
  11. 11.
    Y.M. He, J. Zhang, C.F. Liu, and Y. Sun: Mater. Sci. Eng. A, 2010, 527, 2819–25.CrossRefGoogle Scholar
  12. 12.
    Y. Wang, K. Lei, Y. Ruan, and W. Dong: Int. J. Refract. Met. Hard Mater., 2016, vol. 54, pp. 98–103.CrossRefGoogle Scholar
  13. 13.
    F. Kohler, T. Campanella, S. Nakanishi, and M. Rappaz: Acta Mater., 2008, vol. 56, pp. 1519–28.CrossRefGoogle Scholar
  14. 14.
    Q.Y. Zhai, Y. Yang, J.F. Xu, and X.F. Guo: Chin. J. Nonferrous. Met., 2006, vol. 16, pp. 1374–79.CrossRefGoogle Scholar
  15. 15.
    S. Liu, B. Xiao, H. Xiao, L. Meng, Z. Zhang, and H. Wu: Surf. Coat. Technol., 2016, vol. 286, pp. 376–82.CrossRefGoogle Scholar
  16. 16.
    Y. Wang, X.M. Qiu, D.Q. Sun, and S.Q. Yin: Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 293–97.CrossRefGoogle Scholar
  17. 17.
    W.F. Ding, J.H. Xu, M. Shen, Y.C. Fu, and B. Xiao: Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 432–36.CrossRefGoogle Scholar
  18. 18.
    W.F. Ding, Y.J. Zhu, J.H. Xu, and H.H. Su: Adv. Mech. Eng., 2014, vol. 2014, pp. 461287.CrossRefGoogle Scholar
  19. 19.
    T. Aydoğmuş and Ş. Bor: J. Alloys Compd., 2009, vol. 478, pp. 705–10.CrossRefGoogle Scholar
  20. 20.
    Y.C. Hsieh and S.T. Lin: J. Alloys Compd., 2008, vol. 466, pp. 126–32.CrossRefGoogle Scholar
  21. 21.
    C.C. Lin, R.B. Chen, and R.K. Shiue: J. Mater. Sci., 2001, vol. 36, pp. 2145–50.CrossRefGoogle Scholar
  22. 22.
    W.F. Ding, J.H. Xu, M. Shen, Y.C. Fu, and B. Xiao: Mater. Sci. Technol., 2006, vol. 22, pp. 105–09.CrossRefGoogle Scholar
  23. 23.
    G. Jang, J. Lee, and J. Duh: J. Electron. Mater., 2004, vol. 33, pp. 1103–10.CrossRefGoogle Scholar
  24. 24.
    X. Deng, N. Chawla, K.K. Chawla, and M. Koopman: Acta Mater., 2004, vol. 52, pp. 4291–4303.CrossRefGoogle Scholar
  25. 25.
    J. Wang, C. Liu, C. Leinenbach, and U.E. Klotz: Calphad, 2011, vol. 35, pp. 82–94.CrossRefGoogle Scholar
  26. 26.
    S. Hamar-Thibault and C.H. Allibert: J. Alloys Compd., 2001, vol. 317, pp. 363–66.CrossRefGoogle Scholar
  27. 27.
    V. Vuorinen, H.Q. Dong, and T. Laurila: J. Mater. Sci. Mater. Electron., 2012, vol. 23, pp. 68–74.CrossRefGoogle Scholar
  28. 28.
    U.E. Klotz, C. Liu, F.A. Khalid, and H.R. Elsener: Mater. Sci. Eng. A, 2008, 495, 265–70.CrossRefGoogle Scholar
  29. 29.
    Q.L. Li, H.Z. Ren, W.N. Lei, K. Ding, L. Ding, and S.R. Zhang: Int. J. Adv. Manuf. Technol., 2017, vol. 95, pp. 2111–18.CrossRefGoogle Scholar
  30. 30.
    S.X. Liu, B. Xiao, Z.Y. Zhang, and D.Z. Duan: Int. J. Refract. Met. Hard Mater., 2016, vol. 54, pp. 54–59.CrossRefGoogle Scholar
  31. 31.
    B. Zhao, T. Yu, W. Ding, L. Zhang, H. Su, and Z. Chen: Mater. Sci. Eng. A, 2018, 730, 345–54.CrossRefGoogle Scholar
  32. 32.
    C.Y. Ma, W.F. Ding, J.H. Xu, and Y.C. Fu: Mater. Des., 2015, vol. 65, pp. 50–56.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangP.R. China
  2. 2.Shenyang Emerging Industry Technology Research InstituteNortheastern UniversityShenyangP.R. China

Personalised recommendations