Deoxidation of Titanium Using Mg as Deoxidant in MgCl2-YCl3 Flux
- 23 Downloads
Abstract
To reduce the oxygen level in titanium (Ti) to less than 1000 mass ppm O, using magnesium as the deoxidant at 1300 K (1027 °C), the activity of the deoxidation product (MgO), i.e., aMgO, in the system must be reduced to less than 0.04, from a thermodynamic viewpoint. In this study, we developed a new deoxidation technique for Ti, by adding yttrium chloride (YCl3) to magnesium chloride (MgCl2) flux, which effectively decreases and maintains the aMgO in the system at a low level, via the formation of yttrium oxychloride (YOCl). Through thermodynamic assessment using a \( p_{{{\text{O}}_{ 2} }} {\text{-}}p_{{{\text{Cl}}_{ 2} }} \) diagram, as well as experiments, the deoxidation of Ti to an oxygen level below 1000 mass ppm O, via the reaction O (in Ti) + Mg + YCl3 → MgCl2 + YOCl, was confirmed. Furthermore, using the E-pO2− diagram of the M-O-Cl system (M = Y, Mg), the possibility of electrochemical deoxidation is discussed. In the MgCl2-YCl3 flux, Mg deposits on the Ti cathode and simultaneously deoxidizes it. The activity of the deoxidation product, MgO, decreases due to the formation of YOCl and/or the electrochemical oxidation of oxide ions on the carbon anode; thus, the deoxidation of Ti becomes feasible. This new deoxidation technique using rare-earth-containing MgCl2 flux can be applied to the recycling of Ti scraps, in the future.
Notes
Acknowledgments
The authors are grateful to Professors Hongmin Zhu and Osamu Takeda at Tohoku University for their valuable comments and helpful suggestions. This work was financially supported by the Japan Society for the Promotion of Science (JSPS), through a Grant-in-Aid for Scientific Research (S) (KAKENHI Grant No. 26220910).
References
- 1.Abundance in Earth’s Crust. https://www.webelements.com/
- 2.[2] W. Kroll: J. Electrochem. Soc, 1940, vol. 78, pp. 35-47.CrossRefGoogle Scholar
- 3.F.H. Fore: Titanium-Physical Metallurgy, Processing, and Applications, ASM International, 2015.Google Scholar
- 4.[4] T. H. Okabe, C. Zheng, and Y. Taninouchi: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1056–66.CrossRefGoogle Scholar
- 5.T.H. Okabe, Y. Taninouchi, and C. Zheng: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3107–17.CrossRefGoogle Scholar
- 6.[6] T. H. Okabe, Y. Hamanaka, and Y. Taninouchi: Faraday Discuss., 2016, vol. 190, pp. 109-26.CrossRefGoogle Scholar
- 7.[7] Y. Taninouchi, Y. Hamanaka, and T. H. Okabe: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3394-404.CrossRefGoogle Scholar
- 8.[8] T. H. Okabe, R. O. Suzuki, T. Oishi, and K. Ono: Mater. Trans. JIM, 1991, vol. 32, pp. 485–8.CrossRefGoogle Scholar
- 9.[9] T. H. Okabe, R. O. Suzuki, T. Oishi, and K. Ono: J. Iron Steel Inst. Japan, 1991, vol. 77, pp. 93–9 (in Japanese).CrossRefGoogle Scholar
- 10.[10] T. H. Okabe, T. Oishi, and K. Ono: J. Alloys Compd., 1992, vol. 184, pp. 43–56.CrossRefGoogle Scholar
- 11.[11] T. H. Okabe, M. Nakamura, T. Oishi, and K. Ono: Metall. Mater. Trans. B, 1993, vol. 24, pp. 449–55.CrossRefGoogle Scholar
- 12.M. Nakamura, T.H. Okabe, T. Oishi, and K. Ono: in Proceedings of the International Symposium on Molten Salt Chemistry and Technology, 1993, pp. 529–40.Google Scholar
- 13.[13] T. H. Okabe, T. Oishi, and K. Ono: Metall. Trans. B, 1992, vol. 23, pp. 583–90.CrossRefGoogle Scholar
- 14.[14] O. N. Carlson, J. A. Haefling, and F. A. Schmidt: J. Electrochem. Soc., 1960, vol. 107, pp. 540–5.CrossRefGoogle Scholar
- 15.[15] J. D. Corbett, J. D. Smith, and E. Garcia: J. Less Common Met., 1986, vol. 115, pp. 343–55.CrossRefGoogle Scholar
- 16.[16] T. H. Okabe, K. Hirota, Y. Waseda, and K. T. Jacob: J. Min. Mater. Process. Inst. Japan, 1998, vol. 114, pp. 813–8.Google Scholar
- 17.[17] H. Sano, M. Tashiro, T. Fujisawa, and C. Yamauchi: Mater. Trans. JIM, 1999, vol. 40, pp. 263–7.CrossRefGoogle Scholar
- 18.[18] O. Takeda, K. Nakano, and Y. Sato: Mater. Trans., 2014, vol. 55, pp. 334–41.CrossRefGoogle Scholar
- 19.[19] H. Hira: J. Jpn. Inst. Light Met., 2015, vol. 65, pp. 426–31 (in Japanese).CrossRefGoogle Scholar
- 20.[20] T. B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, USA, 1990.Google Scholar
- 21.[21] O. Kubaschewski, and W. A. Dench: J. Inst. Met., 1953, vol. 82, pp. 87–91.Google Scholar
- 22.[22] K. Ono, and S. Miyazaki: J. Jpn. Inst. Met., 1985, vol. 49, 871–5 (in Japanese).CrossRefGoogle Scholar
- 23.R.L. Fisher: US Patent 4923531A, 1990.Google Scholar
- 24.R.L. Fisher: US Patent 5022935, 1991.Google Scholar
- 25.R.L. Fisher, and S.R. Seagle: US Patent 5211775 A, 1993.Google Scholar
- 26.R.L. Fisher, and S.R. Seagle: in Proceedings of the 7th World Conference on Titanium, 1993, vol. 3, pp. 2265–72.Google Scholar
- 27.[27] G. Z. Chen, D. J. Fray, and T. W. Farthing: Nature, 2000, vol. 407, pp. 361–4.CrossRefGoogle Scholar
- 28.[28] G. Z. Chen, D. J. Fray, and T. W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1041–52.CrossRefGoogle Scholar
- 29.[29] S.-M. Han, Y.-S. Lee, J.-H. Park, G.-S. Choi, and D.-J. Min: Mater. Trans., 2009, vol. 50, no. 1, pp. 215-8.CrossRefGoogle Scholar
- 30.[30] J.-M. Oh, B.-K. Lee, C.-Y. Suh, S.-W. Cho, and J.-W. Lim: Powder Metall., 2012, vol. 55, pp. 402–4.CrossRefGoogle Scholar
- 31.[31] J.-M. Oh, K.-M. Roh, B.-K. Lee, C.-Y. Suh, W. Kim, H. Kwon, and J.-W. Lim: J. Alloys Compd., 2014, vol. 593, pp. 61–6.CrossRefGoogle Scholar
- 32.[32] J.-M. Oh, H. Kwon, W. Kim, and J.-W. Lim: Thin Solid Films, 2014, vol. 551, pp. 98-101.CrossRefGoogle Scholar
- 33.[33] K.-M. Roh, C.-Y. Suh, J.-M. Oh, W. Kim, H. Kwon, and J.-W. Lim: Powder Technol., 2014, vol. 253, pp. 266–9.CrossRefGoogle Scholar
- 34.[34] J.-M. Oh, I.-H. Choi, C.-Y. Suh, H. Kwon, J.-W. Lim, and K.-M. Roh: Met. Mater. Int., 2016, vol. 22, no. 3, pp. 488–92.CrossRefGoogle Scholar
- 35.[35] S.-J. Kim, J.-M. Oh, and J.-W. Lim: Met. Mater. Int., 2016, vol. 22, no. 4, pp. 658–62.CrossRefGoogle Scholar
- 36.[36] Y. Zhang, Z. Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M. L. Free, and J. Guo: Chem. Eng. J., 2016, vol. 286, pp. 517–27.CrossRefGoogle Scholar
- 37.[37] Y. Xia, Z. Z. Fang, P. Sun, Y. Zhang, T. Zhang, and M. Free: J. Mater. Sci., 2017, vol. 52, pp. 4120–8.CrossRefGoogle Scholar
- 38.[38] J. Reitz, C. Lochbichler, and B. Friedrich: Intermetallics, 2011, vol. 19, pp. 762–8.CrossRefGoogle Scholar
- 39.[39] M. Bartosinski, S. Hassan-Pour, B. Friedrich, S. Ratiev, and A. Ryabtsev: Mater. Sci. Eng., 2016, vol. 143, 012009.Google Scholar
- 40.[40] B. M. Moon, J. H. Seo, H. J. Lee, K. H. Jung, J. H. Park, and H. D. Jung: J. Alloys Compd., 2017, vol. 727, pp. 931–9.CrossRefGoogle Scholar
- 41.[41] T. Yahata, T. Ikeda, and M. Maeda: Metall. Trans. B, 1993, vol. 24, pp. 599–604.CrossRefGoogle Scholar
- 42.[42] J.-M. Oh, K.-M. Roh, and J.-W. Lim: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 23033–41.CrossRefGoogle Scholar
- 43.[43] Y. Su, L. Wang, L. Luo, X. Jiang, J. Guo, and H. Fu: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 8958–63.CrossRefGoogle Scholar
- 44.[44] Y. Zhang, Z. Z. Fang, P. Sun, T. Zhang, Y. Xia, C. Zhou, and Z. Huang: J. Am. Ceram. Soc., 2016, vol. 138, pp. 6916–9.Google Scholar
- 45.[45] Y. Zhang, Z. Z. Fang, Y. Xia, P. Sun, B. V. Devener, M. Free, H. Lefler, and S. Zheng: Chem. Eng. J., 2017, vol. 52, pp. 299–310.CrossRefGoogle Scholar
- 46.[46] Y. Xia, Z. Z. Fang, Y. Zhang, H. Lefler, T. Zhang, P. Sun, and M. Free: Mater. Trans., 2017, vol. 58, no. 3, pp. 355–60.CrossRefGoogle Scholar
- 47.Y. Waseda, and M. Isshiki (eds.): Purification Process and Characterization of Ultra High Purity Metals, 3rd ed., Springer, Berlin, Germany, 2001, pp. 3–37.Google Scholar
- 48.[48] T. H. Okabe, K. Hirota, E. Kasai, F. Saito, Y. Waseda, and K. T. Jacob: J. Alloys Compd., 1998, vol. 279, pp. 184–91.CrossRefGoogle Scholar
- 49.Roskill: Rare Earths: Global Industry, Markets and Outlook to 2026, 16th ed., 2049 Information Services, London, UK, 2016.Google Scholar
- 50.[50] I. Barin: Thermochemical Data of Pure Substances, 3rd ed., Wiley-VCH., Weinheim, Germany, 1995.CrossRefGoogle Scholar
- 51.[51] S. M. Pang, S. H. Yan, Z. A. Li, D. H. Cheng, H. L. Xu, and B. Zhao: Chin. J. Rare Met., 2011, vol. 35, pp. 440–50 (in Chinese).Google Scholar
- 52.M.W. Chase: NIST-JANAF Thermochemical Tables, 4th ed., American Institute of Physics, 1998.Google Scholar
- 53.[53] Y. B. Patrikeev, G. I. Novikov, and V. V. Badovskii: Russ. J. Phys. Chem., 1973, vol. 47, p. 284.Google Scholar
- 54.[54] M. Su, and B. Qiu: Acta Metall. Sin., 1966, vol. 9, pp. 142–7 (in Chinese).Google Scholar
- 55.[55] C. J. Rosa: Metall. Trans., 1970, vol. 1, pp. 2517-22.Google Scholar
- 56.H.E. Swanson, E. Tatge, and R.K. Fuyat: Standard X-ray Diffraction Powder Patterns, National Bureau of Standards, 1962, p. 51.Google Scholar
- 57.[57] D. H. Templeton, and G. F. Carter: J. Phys. Chem., 1954, vol. 58, pp. 940–4.CrossRefGoogle Scholar
- 58.D.E. Partin, and M. O’keeffe: J. Solid State Chem., 1991, vol. 95, pp. 176–83.Google Scholar
- 59.[59] R. Littlewood: J. Electrochem. Soc, 1962, vol. 109, pp. 525–34.CrossRefGoogle Scholar