Advertisement

Experimental Study of the Mold Flow Induced by a Swirling Flow Nozzle and Electromagnetic Stirring for Continuous Casting of Round Blooms

  • Dennis SchurmannEmail author
  • Bernd Willers
  • Gernot Hackl
  • Yong Tang
  • Sven Eckert
Article
  • 101 Downloads

Abstract

This study focuses on an experimental investigation of the fluid flow in round bloom continuous casting using a 1:3 model of the industrial casting process. A swirling flow nozzle, represented by the specific design of the RHI Magnesita GYRONOZZLE, is used to produce a swirling motion in the cylindrical mold. The test section is integrated into the Mini-LIMMCAST facility at HZDR, which is operated at room temperature using the ternary alloy GaInSn. Systematic measurements of horizontal and vertical velocity profiles are performed by means of the Ultrasound Doppler Velocimetry. The second part of the study focuses on the interaction between the flow driven by the GYRONOZZLE and concurrent electromagnetic stirring in the mold (M-EMS) by applying rotating magnetic fields (RMFs) at different magnetic flux densities. The effect of the GYRONOZZLE on the flow pattern inside the mold is examined with and without superimposed RMFs and compared to those of a standard single-port nozzle. The measurements reveal that the GYRONOZZLE induces a swirling flow in the whole mold. It is further shown that the influence of a simultaneously applied RMF is mainly restricted to the lower part of the mold since the transport of angular momentum to the top is suppressed by the jets pouring out from the GYRONOZZLE.

Notes

Acknowledgments

The HZDR authors are grateful to RHI Magnesita for supplying the 3D printed model of the GYRONOZZLE and for the financial contribution to the research project.

References

  1. 1.
    S. Yokoya, Y. Asako, S. Hara, J. Szekely: ISIJ Int. 1994, vol. 34, pp. 883–888.CrossRefGoogle Scholar
  2. 2.
    S. Yokoya, S. Takagi, M. Iguchi, Y. Asako, R. Westoff, S. Hara: ISIJ Int. 1998, vol. 38, pp. 827–833.CrossRefGoogle Scholar
  3. 3.
    B. Willers, S. Eckert, U. Michel, I. Haase, G. Zouhar: Mater. Sci. Eng. A 2005, vol. 402, pp. 55–65.CrossRefGoogle Scholar
  4. 4.
    Z.-J. Su, J. Chen, K. Nakajima, J.-C. He: Steel Res. Int. 2009, vol. 80, pp. 824–831.Google Scholar
  5. 5.
    A. A. Tzavaras, H. D. Brody: JOM 1984, vol. 36, pp. 31–37.CrossRefGoogle Scholar
  6. 6.
    K.-H. Spitzer, M. Dubke, K. Schwerdtfeger: Metall. Trans. B 1986, vol. 17, pp. 119–131.CrossRefGoogle Scholar
  7. 7.
    M. Javurek, M. Barna, P. Gittler, K. Rockenschaub, M. Lechner: Steel Res. Int. 2008, vol. 79, pp. 617–626.CrossRefGoogle Scholar
  8. 8.
    S. Yokoya, R. Westoff, Y. Asako, S. Hara, J. Szekely: ISIJ Int. 1994, vol. 34, pp. 889–895.CrossRefGoogle Scholar
  9. 9.
    T. Wondrak, S. Eckert, V. Galindo, G. Gerbeth, F. Stefani, K. Timmel, A. J. Peyton, W. Yin, S. Riaz: Ironmak. Steelmak. 2012, vol. 39, pp. 1–9.CrossRefGoogle Scholar
  10. 10.
    D. Li, Z. Su, J. Chen, Q. Wang, Y. Yang, K. Nakajima, K. Marukawa, J. He: ISIJ Int. 2013, vol. 53, pp. 1187–1194.CrossRefGoogle Scholar
  11. 11.
    Y. Yang, P. G. Jönsson, M. Ersson, K. Nakajima: Steel Res. Int. 2015, vol. 86, pp. 341–360.CrossRefGoogle Scholar
  12. 12.
    Y. Yang, P. G. Jönsson, M. Ersson, Z. Su, J. He, K. Nakajima: Steel Res. Int. 2015, vol. 86, pp. 1312–1327.CrossRefGoogle Scholar
  13. 13.
    P. Ni, L. T. I. Jonsson, M. Ersson, P. G. Jönsson: Steel Res. Int. 2017, vol. 88, pp. 1600155.CrossRefGoogle Scholar
  14. 14.
    P. Ni, L. T. I. Jonsson, M. Ersson, P. G. Jönsson: ISIJ Int. 2017, vol. 57, pp. 2175–2184.CrossRefGoogle Scholar
  15. 15.
    P. Ni, D. Wang, L. T. I. Jonsson, M. Ersson, T.-a. Zhang, P. G. Jönsson: Metall. Mater. Trans. B 2017, vol. 48, pp. 2695–2706.CrossRefGoogle Scholar
  16. 16.
    P. Ni, M. Ersson, L.T.I. Jonsson, T.A. Zhang, and P.G. Jönsson: Metals, 2018, vol. 8, art. no. 368.Google Scholar
  17. 17.
    Y. Tsukaguchi, H. Hayashi, H. Kurimoto, S. Yokoya, K. Marukawa, T. Tanaka: ISIJ Int. 2010, vol. 50, pp. 721–729.CrossRefGoogle Scholar
  18. 18.
    H. Sun, J. Zhang: Metall. Mater. Trans. B 2014, vol. 45, pp. 936–46.CrossRefGoogle Scholar
  19. 19.
    G. Hackl, G. Nitzl, Y. Tang, C. Eglsäer, and D. Chalmers: Innovative Flow Control Refractory Products for the Continuous Casting Process: in: AISTech 2015 Proc.: Assoc. for Iron & Steel Technol., 2015, pp. 2436–42.Google Scholar
  20. 20.
    G. Hackl, Y. Tang, G. Nitzl, D. Schurmann, B. Willers, and S. Eckert: Gyro Nozzle an Innovative Submerged Entry Nozzle Design for Billet and Bloom Casting: in: AISTech 2018 Proc.: Assoc. for Iron & Steel Technol., Philadelphia, 2018, pp. 1655–62.Google Scholar
  21. 21.
    K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, T. Wondrak: ISIJ Int. 2010, vol. 50, pp. 1134–1141.CrossRefGoogle Scholar
  22. 22.
    K. Timmel, X. Miao, T. Wondrak, F. Stefani, D. Lucas, S. Eckert, G. Gerbeth: Eur. Phys. J. Spec. Topics 2013, vol. 220, pp. 151–166.CrossRefGoogle Scholar
  23. 23.
    K. Timmel, C. Kratzsch, A. Asad, D. Schurmann, R. Schwarze, and S. Eckert: IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 228, pp. 012019.Google Scholar
  24. 24.
    Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, R. Novakovic: J. Chem. Eng. Dats 2014, vol. 59, pp. 757–763.CrossRefGoogle Scholar
  25. 25.
    B. Willers, M. Barna, J. Reiter, S. Eckert: ISIJ Int. 2017, vol. 57, pp. 468–477.CrossRefGoogle Scholar
  26. 26.
    C.Y. Ho, and T.K. Chu: Electrical resistivity and thermal conductivity of nine selected AISI stainless steels: Tech. Rep. 45: Cindas, Purdue University, West Lafayette, 1977.Google Scholar
  27. 27.
    I. Jimbo, A. W. Cramb: Metall. Trans. B 1993, vol. 24, pp. 5–10.CrossRefGoogle Scholar
  28. 28.
    M. Korolczuk-Hejnak, P. Migas, W. Ślęzak: J. Phys. 2015, vol. 602, pp. 012037.Google Scholar
  29. 29.
    Z. Li, K. Mukai, M. Zeze, K. C. Mills: J. Mater. Sci. May 2005, vol. 40, pp. 2191–2195.CrossRefGoogle Scholar
  30. 30.
    S. Eckert, A. Cramer, and G. Gerbeth: Velocity Measurement Techniques for Liquid Metal Flows, vol. 80: in: R. Moreau, ed., Magnetohydrodynamics: Vol. 80: Springer, Dordrecht, 2007, pp. 275–94.Google Scholar
  31. 31.
    Signal Processing S.A.: DOP3000-3010 Series User’s Manual: Switzerland, 2017.Google Scholar
  32. 32.
    J. Krautkrämer, H. Krautkrämer: Werkstoffprüung mit Ultraschall: 5th Edition: Springer, Berlin, Heidelberg, 1986.Google Scholar
  33. 33.
    Evonik Industries AG: Technical Information PLEXIGLAS ® 2013.Google Scholar
  34. 34.
    N.B. Morley, J. Burris, L.C. Cadwallader, and M.D. Nornberg: Rev. Sci. Instrum., 2008, vol. 79, art. no. 056107.Google Scholar
  35. 35.
    S. Franke, L. Büttner, J. Czarske, D. Räbiger, S. Eckert: Flow Meas. Instrum. Sep. 2010, vol. 21, pp. 402–409.CrossRefGoogle Scholar
  36. 36.
    S. Franke, H. Lieske, A. Fischer, L. Büttner, J. Czarske, D. Räbiger, S. Eckert: Ultrasonics. 2013, vol. 53, pp. 691–700.CrossRefGoogle Scholar
  37. 37.
    B.G. Thomas: Fluid flow in the mold: in: Making, Shaping and Treating of Steel: 11th Edition: vol. 5: AISE Steel Foundation, Pittsburgh, 2003, pp. 1–41.Google Scholar
  38. 38.
    F.-C. Chang, J. R. Hull, L. Beitelman: Metall. Mater. Trans. B 2004, vol. 35, pp. 1129–1137.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR)DresdenGermany
  2. 2.RHI MagnesitaLeobenAustria

Personalised recommendations