Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 2, pp 914–923 | Cite as

Recovery of Carbon and Valuable Components from Spent Pot Lining by Leaching with Acidic Aluminum Anodizing Wastewaters

  • Xiaoming LiEmail author
  • Weidong Yin
  • Zhao FangEmail author
  • Qihang Liu
  • Yaru Cui
  • Junxue Zhao
  • Hao Jia
Article
  • 54 Downloads

Abstract

A three-step process was employed to separate cryolite from used carbon cathodes, known as spent pot lining (SPL), and obtain valuable carbon. The process comprised leaching of NaF from the imbedded electrolyte with water, followed by leaching of Na3AlF6, CaF2, and NaAl11O17 with acidic anodizing wastewater, and then precipitating the electrolyte components from the mixed filtrate from the previous two steps. The influences of stirring rate, liquid–solid ratio, temperature, and time on the extent of leaching of cryolite and recovery of carbon were studied. Additionally, the effects of pH value, F/Al ratio, temperature, and time on the recovery of valuable components in the mixed filtrate were evaluated. The results showed that most NaF in the SPL was dissolved by water leaching. The residual electrolyte in SPL was mainly cryolite and contained approximately 0.95 pct NaF. The purity of the carbon obtained reached 95.5 pct under optimal experimental conditions (leaching temperature: 80 °C; stirring rate: 300 rpm; liquid–solid ratio: 8 mL/g; leaching time: 180 minutes). The recovery of cryolite and the purity of the sodium sulfate crystal from the mixed filtrate were 98.4 and 92.0 pct, respectively, under suitable conditions (pH 9; 75 °C; 4 hour; F/Al ratio of 6:1).

Notes

Acknowledgments

We thank the National Natural Science Foundation of China (Nos. 51574189, 51774224, 51574191) for financial support for this research.

References

  1. 1.
    Y. Courbariaux, J. Chaouki, and C. Guy: Ind. Eng. Chem. Res., 2004, vol. 43, pp. 5828-5837.CrossRefGoogle Scholar
  2. 2.
    V. Gomes, P. Z. Drumond, J. O. P. Neto, and A. R. Lira: Light Metals, TMS, Warrendale, 2005, pp. 1057-1063.Google Scholar
  3. 3.
    D. Miksa, M. Homsak, and N. Samec: Waste Manage. Res., 2003, vol. 21, pp. 467-473.CrossRefGoogle Scholar
  4. 4.
  5. 5.
    R.P. Pawlek: Light Metals, TMS, Warrendale, 2018, pp. 671-674.Google Scholar
  6. 6.
    Z. Shi, W. Li, X. Hu, B. Ren, B. Gao, and Z. Wang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 222-227.CrossRefGoogle Scholar
  7. 7.
    D. F. Lisbona, C. Somerfield, and K. M. Steel: Hydrometallurgy, 2013, vols. 134-135, pp. 132-143.CrossRefGoogle Scholar
  8. 8.
    J. A. Camargo: Chemosphere, 2003, vol. 50, pp. 251-264.CrossRefGoogle Scholar
  9. 9.
    X. Zhao and L. Ma: IOP Conf. Ser., 2018, 108, 042023CrossRefGoogle Scholar
  10. 10.
    S. S. Parhi: Master’s Thesisi, National Institute of Technology, Rourkela, Odisha, 2014, p. 12Google Scholar
  11. 11.
    TMS, P. von Krüger: Light Metals, TMS, 2011, pp. 275-280.Google Scholar
  12. 12.
    D. Yu, and K. Chattopadhyay: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp.881-891.CrossRefGoogle Scholar
  13. 13.
    D. Yu, V. Mambakkam, A. H. Rivera, D. Li and K. Chattopadhyay: Aluminium International Today, 2015, pp. 5Google Scholar
  14. 14.
    G. Holywell, R. Breault: JOM, 2013, vol. 65, pp. 1441-1451.CrossRefGoogle Scholar
  15. 15.
    V. Y. Bazhin and R. K. Patrin: Refract. Ind. Ceram, 2011, vol. 52, pp. 63-65.CrossRefGoogle Scholar
  16. 16.
    G. Hamel, R. Breault, G. Charest, S. Poirier, and B. Boutin: Light Metals, TMS, Warrendale, 2009, pp. 921-925.Google Scholar
  17. 17.
    W. Li and X. Chen: Light Metals, TMS, Warrendale, 2010, pp. 1064-1066.Google Scholar
  18. 18.
    C. A. Young, S. Nordwick, and M. Foote: The Fourth International Conference on Materials Engineering for Resources, Akita, Japan, 2001, pp. 13-25.Google Scholar
  19. 19.
    K. Mansfield, G. Swayn, J. Harpley, and P. R. Tayllor: EPD Congress: Fundamentals of Advanced Materials for Energy Conversion, Seattle, USA, 2002, p. 315-27.Google Scholar
  20. 20.
    J. F. Bush: Light Metals, TMS, Warrendale, 1986, pp. 1081-1099.Google Scholar
  21. 21.
    L. Pulvirenti, C. W. Mastropietro, A. Barkatt, and S. M. Finger: J. Hazard. Mater, 1996, vol. 46, pp. 13-21.CrossRefGoogle Scholar
  22. 22.
    D. F. Lisbona, S. Christopher, and M. S. Karen: Ind. Eng. Chem. Res., 2012, vol. 51, pp. 8366-8377.CrossRefGoogle Scholar
  23. 23.
    B. S. Scott, D. T. Brett, and W. S. Scott: J. Environ. Chem. Eng., 2015, vol. 3, pp. 2580-2587.CrossRefGoogle Scholar
  24. 24.
    X. Z. Cao, Y. Y. Shi,S. Zhao, and X. X. Xue: J. Northeast. Univ. Nat. Sci., 2014, 35, 1746-1749.Google Scholar
  25. 25.
    D. F. Lisbona and M. S. Karen: Sep. Purif. Technol., 2008, vol. 61, pp. 182-192.CrossRefGoogle Scholar
  26. 26.
    D. F. Lisbona, C. Somerfield, and K. M. Steel: Ind. Eng. Chem. Res., 2012, vol. 51, pp. 12712-12722.CrossRefGoogle Scholar
  27. 27.
    S. L. Cheng. Master’s Thesis, Nanchang University, Nanchang, 2008, p. 29.Google Scholar
  28. 28.
    X. H. Liu, X. M. Zhang, S. L. Cheng, and J. J. Chen: Light Metals, 2011, vol. 40, pp. 15-18.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Metallurgical EngineeringXi’an University of Architecture and TechnologyXi’anP.R. China
  2. 2.Research Center of Metallurgical Engineering and Technology of Shaanxi ProvinceXi’an University of Architecture and TechnologyXi’anP.R. China

Personalised recommendations