Metallurgical and Materials Transactions B

, Volume 50, Issue 2, pp 1035–1041 | Cite as

Band-Like Distribution of Grains in Selective Laser Melting Track Under Keyhole Mode

  • Yafei Wang
  • Leilei Xing
  • Kailun Li
  • Chenfan Yu
  • Jing Ma
  • Wei LiuEmail author
  • Zhijian ShenEmail author


Grain structure in the melt pool under keyhole mode is complex due to complicated solidified conditions, especially in consideration of the intense fluid flow. This paper aims to clarify grain structure and grain growth mechanism in melt pool under keyhole mode in selective laser melting. The microstructure from transverse cross section and longitudinal cross section near the centerline of 316L single tracks was characterized. In the longitudinal cross section, band-like grain structure formed. It is found that fluid flow can refine the grains, and large columnar grains grow towards crystallographic 〈110〉 direction.



This research was funded by the National Magnetic Confinement Fusion Science Program of China under Grant 2014GB117000 and the Joint Funds of the National Natural Science Foundation of China under Grant U1605243.


  1. 1.
    Wayne E. King, Holly D. Barth, Victor M. Castillo, Gilbert F. Gallegos, John W. Gibbs, Douglas E. Hahn, Chandrika Kamath and Alexander M. Rubenchik, Journal of Materials Processing Technology 2014, vol. 214, pp. 2915-2925.CrossRefGoogle Scholar
  2. 2.
    Michael Cloots, Peter J. Uggowitzer and Konrad Wegener, Materials & Design 2016, vol. 89, pp. 770-784.CrossRefGoogle Scholar
  3. 3.
    Jingjing Yang, Jie Han, Hanchen Yu, Jie Yin, Ming Gao, Zemin Wang and Xiaoyan Zeng, Materials & Design 2016, vol. 110, pp. 558-570.CrossRefGoogle Scholar
  4. 4.
    Qi, T., Zhu, H., Zhang, H., Yin, J., Ke, L., & Zeng, X. (2017). Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Materials & Design, 135, 257–266CrossRefGoogle Scholar
  5. 5.
    Lin-Jie Zhang, Gui-Feng Zhang, Jie Ning, Xing-Jun Zhang and Jian-Xun Zhang, Materials & Design 2015, vol. 88, pp. 720-736.CrossRefGoogle Scholar
  6. 6.
    Wenda Tan and Yung C. Shin, Computational Materials Science 2015, vol. 98, pp. 446-458.CrossRefGoogle Scholar
  7. 7.
    H. L. Wei, J. W. Elmer and T. DebRoy, Acta Materialia 2017, vol. 133, pp. 10-20.CrossRefGoogle Scholar
  8. 8.
    Sindo, K.: Welding Metallurgy. (Wiley, New York, 2003).Google Scholar
  9. 9.
    K. Murakami, H. Aihara and T. Okamoto, Acta Metallurgica 1984, vol. 32, pp. 933-939.CrossRefGoogle Scholar
  10. 10.
    K. Murakami, T. Fujiyama, A. Koike and T. Okamoto, Acta Metallurgica 1983, vol. 31, pp. 1425-1432.CrossRefGoogle Scholar
  11. 11.
    A. N. Turchin, D. G. Eskin and L. Katgerman, Materials Science and Engineering: A 2005, vol. 413-414, pp. 98-104.CrossRefGoogle Scholar
  12. 12.
    A. N. Turchin, D. G. Eskin and L. Katgerman, Metallurgical and Materials Transactions A 2007, vol. 38, pp. 1317-1329.CrossRefGoogle Scholar
  13. 13.
    S. Henry, M. Rappaz and P. Jarry, Metallurgical and Materials Transactions A 1998, vol. 29, pp. 2807-2817.CrossRefGoogle Scholar
  14. 14.
    Akira Matsunawa, Jong-Do Kim, Naoki Seto, Masami Mizutani and Seiji Katayama, Journal of Laser Applications 1998, vol. 10, pp. 247-254.CrossRefGoogle Scholar
  15. 15.
    M. Schaefer, S. Kessler, F. Fetzer, and T. Graf: J. Laser Appl., 2017, vol. 29, art. no. 012010.Google Scholar
  16. 16.
    C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers and P. D. Lee, Nat Commun 2018, vol. 9, p. 1355.CrossRefGoogle Scholar
  17. 17.
    A. Matsunawa, N. Seto, J.-D. Kim, M. Mizutani, and S. Katayama: Proc. SPIE 3888, High-Power Lasers in Manufacturing, 2000,
  18. 18.
    S. Katayama, D.V. Gapontsev, Y. Kawahito, D.A. Kliner, J.W. Dawson, and K. Tankala: Proc. SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications, 2009.Google Scholar
  19. 19.
    S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen: J. Phys. D, 2011, vol. 44, art. no. 025301.Google Scholar
  20. 20.
    H. Zhao, W. Niu, B. Zhang, Y. Lei, M. Kodama, and T. Ishide: J. Phys. D, 2011, vol. 44, art. no. 485302.Google Scholar
  21. 21.
    Shengyong Pang, Weidong Chen and Wen Wang, Metallurgical and Materials Transactions A 2014, vol. 45, pp. 2808-2818.CrossRefGoogle Scholar
  22. 22.
    C. Donadille, R. Valle, P. Dervin and R. Penelle, Acta Metallurgica 1989, vol. 37, pp. 1547-1571.CrossRefGoogle Scholar
  23. 23.
    S. Henry, G. U. Gruen and M. Rappaz, Metallurgical and Materials Transactions A 2004, vol. 35, pp. 2495-2501.CrossRefGoogle Scholar
  24. 24.
    Luyan Yang, Shuangming Li, Xueqing Chang, Hong Zhong and Hengzhi Fu, Acta Materialia 2015, vol. 97, pp. 269-281.CrossRefGoogle Scholar
  25. 25.
    C.J. Smithells: in Smithells Metals Reference Book, E.A. Brandes and G.B. Brook, eds., Butterworth-Heinemann Oxford, 1992.Google Scholar
  26. 26.
    Saad A. Khairallah, Andrew T. Anderson, Alexander Rubenchik and Wayne E. King, Acta Materialia 2016, vol. 108, pp. 36-45.CrossRefGoogle Scholar
  27. 27.
    Jae Y. Lee, Sung H. Ko, Dave F. Farson and Choong D. Yoo, Journal of Physics D: Applied Physics 2002, vol. 35, pp. 1570-1576.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTsinghua UniversityBeijingP.R. China
  2. 2.Department of Materials and Environment Chemistry, Arrhenius LaboratoryStockholm UniversityStockholmSweden

Personalised recommendations